DIBH breast VMAT treatments using AlignRT InBore in Halcyon

Laurence Delombaerde ${ }^{1,2}$ PhD, Saskia Petillion ${ }^{2}$ PhD, Caroline Weltens ${ }^{1,2}$ MD PhD, Tom Depuydt ${ }^{1,2}$ PhD
${ }^{1}$ KU Leuven - University of Leuven, Department of Oncology, B-3000 Leuven, Belgium
${ }^{2}$ University Hospitals Leuven, Department of Radiation Oncology, B-3000 Leuven, Belgium

Purpose

Surface guidance has the advantage of being a non-contact and nonionizing positioning and DIBH modality. VisionRT Ltd. introduced the AlignRT InBore system for SGRT in a closed-bore linac (Halcyon, Varian Medical Systems). In this study we treated left-sided breast cancer patients in breath-hold and assessed the positional accuracy and workflow efficiency.

Methods

6 left-sided breast cancer patients were included (ages 65-69)

21 fx of 2.66 Gy to tumor bed/2.17 Gy to whole breast (VMAT-SIB)
Both patient setup and DIBH verification is performed with AlignRT (setup and InBore) where a standard fraction is as follows:

A fraction can be completed in 4 breath-holds (minus setup)
\longleftrightarrow (1) 17 sec. kV-CBCT
(2) $3 \times 25 \mathrm{sec}$. partial arc

Portal images are acquired during treatment to assess inter and intra fraction error (Varian iTools)

The workflow efficiency is extracted from Record \& Verify system (ARIA) and AlignRT timestamps

Results

Patients spent median 96% of the total breath-hold within a $\pm 2 \mathrm{~mm}$ range
$\mathbf{9 0 \%}$ of fractions were completed in 4 breath-holds (avg. 25 sec ± 5 sec)

Median time patients spent on the couch: $\mathbf{1 0} \mathbf{~ m i n ~} \mathbf{4 5} \sec$ of which 5 $\min 18 \mathrm{sec}$ is spent at the isocenter.

Treatments can be comfortably performed in 18 min timeslots (our standard for DIBH)

Mean online couch shifts are $2.1 \mathrm{~mm}(\mathrm{AP}), 2.1(\mathrm{SI})$ and $0.7(\mathrm{ML})$

Conclusion

Fully surface guided DIBH workflows for left-sided breast cancer patients in the Varian Halcyon linac proved highly efficient with good inter and intra fraction reproducibility.

