DIBH with Align RT Vs Assisted Respiratory Module

Dr. Ashish Rustogi
Consultant and Head
Department of Radiation Oncology
Bahrain Oncology Centre
King Hamad University Hospital
Kingdom Of Bahrain

Disclosures:-

Sponsorship from Vision RT for this talk

Motion management in BOC

Spoilt for Choices

Motion management in BOC

Spoilt for Choices

- Challenges of Motion Management
 Expiratory or Inspiratory Breath Hold
 - Lung Tumors
 - Upper Abdomen Tumors
- Closeness of Critical Structure
 Inspiratory Breath Hold
 - Breast Cancer Radiation Therapy

Individualised treatment Stragregy

Tumor Motion Assessment

- SMART
- Pretreatment 4DCBCT
- Liver SBRT with ABC

Tumor Motion Assessment

Pretreatment – 4D CBCT(Symmetric)

Realtime – MR Linac(Elekta)

Long term Cardiac Mortality & Morbidity of Breast cancer Radiotherapy

- Radiation Therapy improves LRC from 26% to 7% and ARR mortality by 5.4%
- Mortality in patients with Left Vs Right Breast Cancer (p=0.02)

Long term Cardiac Mortality & Morbidity of Breast cancer Radiotherapy

- Left Vs Right Breast Cancer (p=0.02)
- No apparent Threshold (ALARA)
- Every 1Gy increases incidence of Major CA by 7.4%
- Mean Heart dose a significant predictor

Stowe et al. Breast Cancer . 2022; 14: 175–186.

Cardiac Sparing-Reducing Late Toxicities

Effect of DIBH on OAR dosimetry

Single-institution report of setup margins of voluntary deep-inspiration breath-hold (DIBH) whole breast radiotherapy implemented with real-time surface imaging

The data for effect on Long term Survivorship is yet to mature

Mean heart dose (Gy) in DIBH plan	1.7	8 -3
Mean heart dose (Gy) in FB plan	4.8	_
Ipsilateral lung V20Gy (%) in DIBH plan	21.2%	21.5%
Ipsilateral lung V20Gy (%) in FB plan	26.3%	28.6%

J Appl Clin Med Phys. 2018 Jul; 19(4): 205-213.

- What are the techniques?
- Comparison of two techniques?
 - Advantages and disadvantages of both?
 - Accuracy of positioning
 - Reproducibility
 - Effects on OAR doses
- Can they Complement each other?

- What are the techniques?
- Comparison of two techniques?
 - Advantages and disadvantages of both?
 - Accuracy of positioning
 - Reproducibility
 - Effects on OAR doses
- Can they Complement each other?

- Voluntary Breath Hold
- Assisted or Involuntary Breath Hold

ACTIVE Breathing Control (mDIBH)

- Spirometer-based valve system to control to serve as a guide for DIBH.
- 75% of max Lung inspiratory volume.
- Robust reproducibility of Lung Volumes
- ABC intra-session lung volume variation was 1.8% (99 mL), about half of the 4.1% (226 mL) with VIBH.*
- Assisted Ventilation –So patient can be made compliant.
- Significantly decreases the heart dose as compared to Free Breathing

Kaza et al. J Appl Clin Med Phys. 2017 Mar; 18(2): 154-162.

ABC

- No intrafraction monitoring
- Head and Arm position can vary leading to breast tissue displacement
- Arching cannot be detected
- Vertical and Super-inferior displacements go unnoticed
- Patients with Dentures and elderly women
- Breathing techniques makes a difference

Optical Surface Imaging based DIBH

- Monitors respiratory signal and patient positioning simultaneously
- Robust intrafraction monitoring of surface – correlating with initial patient set up and decreased intrafraction imaging
- Issues:
 - Patients with Large Breast with Folds
 - Very Obese patient
 - Non coplanar fields (PBI)

- What are the techniques?
- Comparison of two techniques?
 - Advantages and disadvantages of both?
 - Accuracy of positioning
 - Reproducability
 - Effects on OAR doses
- Can they Complement each other?

Evaluation of Breath Hold Techniques

Randomized Controlled Trial > Radiother Oncol. 2013 Aug;108(2):242-7. doi: 10.1016/j.radonc.2013.04.021. Epub 2013 May 29.

The UK HeartSpare Study: randomised evaluation of voluntary deep-inspiratory breath-hold in women undergoing breast radiotherapy

Frederick R Bartlett ¹, Ruth M Colgan, Karen Carr, Ellen M Donovan, Helen A McNair, Imogen Locke, Philip M Evans, Joanne S Haviland, John R Yarnold, Anna M Kirby

- N=23 patients
- Compared vDIBH Vs ABC DIBH
- End points: Patient Comfort, treatment time, Radiographer satisfaction

Evaluation of Breath Hold Techniques

- No difference in mean displacements
- No difference in normal tissue doses
- vDIBH less financial burden
- Significant difference in Patient satisfaction (p=0.007) and Radiographer Satisfaction score (p=0.03)
- Timings

	ABC _DIBH	vDIBH	pvalue
Planning CT Session	27 mins	24 mins	0.02
Treatment Set up	11 mins	9 mins	0.04
Mean Total time	19 mins	19 mins	NS

- What are the techniques?
- Comparison of two techniques?
 - Advantages and disadvantages of both?
 - Accuracy of positioning
 - Reproducibility
 - Effects on OAR doses
- Can they Complement each other?

ABC Vs OSI based DIBH (Lung Volumes Vs Reference Surface Model

Variability of Breast Surface Positioning Using an Active Breathing Coordinator for a Deep Inspiration Breath Hold Technique

Kristen McConnell 1 , Neil Kirby 2 , Karl Rasmussen 2 , Alonso N. Gutierrez 3 , Nikos Papanikolaou 2 , Dennis Stanley 4

- Lung Volumes is not a perfect proxy for anatomical positioning
- Lung and chest wall position varies with breathing maneuver.
- Overzealous effort may lead to arching
- Variation of 2mm intrabreath hold and 2.5 mm intrabreath hold noted on MR studies

Variability of Breast Surface Positioning Using an Active Breathing Coordinator for a Deep Inspiration Breath Hold Technique

Kristen McConnell 1 , Neil Kirby 2 , Karl Rasmussen 2 , Alonso N. Gutierrez 3 , Nikos Papanikolaou 2 , Dennis Stanley 4

3D RMS Statistical Values	
Average difference (mm)	7.12 ± 2.70
Maximum difference (mm)	11.72
Minimum difference (mm)	1.02
Median difference (mm)	7.67
Normalized inhalation threshold volume (L/L)	1.0 ± 0.0

- Inspite of same Lung Volume 3D deviation difference across the whole volume was significant
- Becomes important in PBI and SIB boost

RESEARCH Open Access

Stability and reproducibility of 6013 deep inspiration breath-holds in left-sided breast cancer

D. Reitz¹, F. Walter¹, S. Schönecker¹, P. Freislederer¹, M. Pazos¹, M. Niyazi¹, G. Landry¹, F. Alongi^{2,3}, E. Bölke⁴, C. Matuschek⁴, M. Reiner¹, C. Belka¹ and S. Corradini^{1*}

Radiation Oncology (2020) 15:121

N=103 patients

Age: 32-80 years (Mean 57.7 +/- 11 years Fractions: 1944, Breath hold sessions 6013

Whole group:

• Mean:1.3 mm<u>+</u> 0.6(95%-CI: [0.5–2.6]

Median: 1.2 mm. (p=0.4)

Individual patient:
Breathing amplitude between
individual patients were different
(p=0.007)

Comparison of the vDIBH vs aDIBH

Stability and reproducibility comparisons between deep inspiration breath-hold techniques for left-sided breast cancer patients: A prospective study

- ►N= 8 Patients
- Crossover of DIBH Technique every 4 sessions
- ■2D plans Lt. Breast and SCV
- ► EPID Verification and in field Lung Volume recorded
- Coefficient of Variation among the Lung volumes Calculated

J Appl Clin Med Phys. 2023;e13906

Comparison of the mDIBH vs ABC

Intrafractiion Stability	Coefficient of Stability		p value
Lt Lat	1.26 <u>+</u> 0.67	1.46 <u>+</u> 0.92	P=NS
SCV	1.52 <u>+</u> 0.70	1.55 <u>+</u> 0.78	P=NS

Interfractiion Stability	Coefficient of Stability		p value
Lt Lat	11.0 ± 3.4%	14.9 ± 6.0%	P=NS
SCV	13.0 ± 2.5%	14.8 ± 9%	P=NS

No significant difference in treatment duration and Set up time Favoring vDIBH

- What are the techniques?
- Comparison of two techniques?
 - Advantages and disadvantages of both?
 - Accuracy of positioning
 - Reproducibility
 - Effects on OAR doses
- Can they Complement each other?

At BOC Best of Both Worlds

Align RT + ABCTM

ABC provides Robust volume reproducibility
AlignRT provides precise alignment and intrafraction monitoring ,

reducing the variability with respiratory

maneuvers and BH drift

Conclusion

- The DIBH techniques offer proven advantages in breast radiotherapy via dosimetric sparing of organs-at-risk.
- Compared to ABC, OSI provides real-time tracking of breast position without dosimetric detriment to the patient.
- Mo significant difference in OAR sparing.
- OSI is a non invasive and patient friendly.
- Future directions to include possible heart positioning which has a variance of abot 10 mm
- OSI, Combined with ABC and IGRT, may be a strategy to circumvent limitations of each.

The team that matters