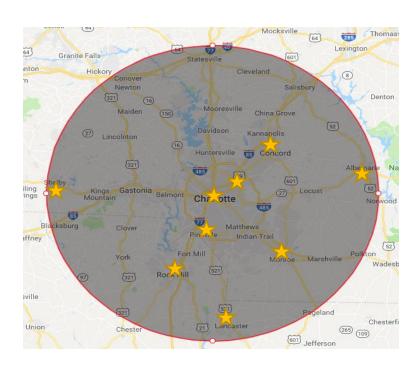


Dosimetric Analysis of Intra-fraction Motion Detected by SGRT During Linac SRS

Ryan Foster, PhD, FAAPM
Chief Physicist
Levine Cancer Institute/Atrium Health

Disclosures


• VisionRT paid my travel expenses for this conference.

Background on Atrium Health & Levine Cancer Institute

- Serves the Charlotte, NC Metro Area
- More than 40 hospitals and 900 care locations
- More than 65,000 employees
- Largest health system in North and South Carolina
- 9 radiation oncology clinics with 13 linacs, 11 with SGRT
- Treating 360+ patients per day
- Wake Forest University Medical School academic core

Objectives

- Understand the benefits of SGRT for SRS treatments
- Evaluate the potential dosimetric consequences of undetected intra-fraction motion during SRS

Advances in Radiation Oncology (2023) 8, 101151

Scientific Article

Dosimetric Analysis of Intra-Fraction Motion Detected by Surface-Guided Radiation Therapy During Linac Stereotactic Radiosurgery

Ryan D. Foster, PhD, a,* Benjamin J. Moeller, MD, PhD, Myra Robinson, MSPH, Megan Bright, MS, Justin L. Ruiz, MS, Carnell J. Hampton, PhD, and John H. Heinzerling, MD

Clinical Results for SGRT-guided SRS

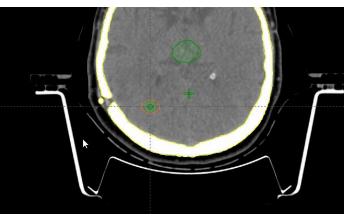
Frameless, real-time, surface imaging-guided radiosurgery: update on clinical outcomes for brain metastases

Nhat-Long L. Pham, Pranav V. Reddy, James D. Murphy, Parag Sanghvi, Jona A. Hattangadi-Gluth, Grace Gwe-Ya Kim, Laura Cervino, Todd Pawlicki, Kevin T. Murphy

Table 2 Comparison of local control and survival rates in retrospective studies of brain metastases treated with radiosurgery reportin kaplan-meier data ^a								
Study	Treatment system	Patients, n	Crude LC, %	Actuarial 1-yr LC, %	Actuarial 1-yr OS, %			
Schomas et al. (19) [2005]	Frame-based LINAC	80	91	89	33			
Bhatnagar et al. (18) [2006]	Frame-based Gamma Knife	205	***	71	37 ^b			
Brenenman <i>et al</i> . (6) [2009]	Frameless LINAC	53	***	80	44			
Nath et al. (7) [2010]	Frameless LINAC	65	88	76	40			
Pan et al. (17) [2012]	Frameless, surface-imaging guided LINAC	44	85	76	38			
Present series	Frameless, surface-imaging guided LINAC	163	85	79	56			
a, LC indicates local control; LINAC, linear accelerator; ***, not reported; b, estimated from Kaplan-Meier curve.								

Why Use Intra-fraction Monitoring During SRS?

- AAPM TG101 states: "After localization, some kind of monitoring is desirable to track patient breathing and monitor patient positioning during treatment."
- ASTRO SRS/SBRT Safety White Paper states: "In addition to pretreatment positioning, the management of intrafraction patient movement and physiological motions (eg, breathing) must be accounted for."
- What are the dosimetric consequences of not monitoring?



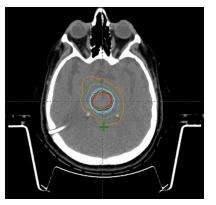
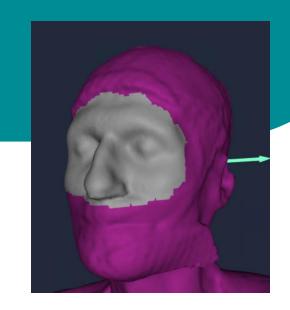

Patient Characteristics & Treatment Planning

Table 1 Treatment characteristics for study patients

Characteristic	N = 25 subjects	
Treatment, n (%)		
MLC	13	52.0%
Cone	12	48.0%
Fractions, n (%)		
1	21	84.0%
3	4	16.0%
Dose per fraction, n (%)		
900 cGy	4 (MLC)	16%
1500 cGy	1 (MLC)	4%
1800 cGy	3 (MLC)	12%
2100 cGy	17 (12 cone, 5 MLC)	68%
GTV volume (cc)		
Median (range), all patients	1.05	0.03-29.48
Median (range), MLC	5.22	0.4-29.48
Median (range), cone	0.26	0.03-1.05
PTV volume (cc)		
Median (range), all patients	1.61	0.13-44.25
Median (range), MLC	8.38	0.79-44.25
Median (range), cone	0.56	0.13-1.61
Margin, n (%)		
0 mm	1 (MLC)	4%
1 mm	20 (12 cone, 8 MLC)	80%
2 mm	3 (MLC)	12%
3 mm	1 (MLC)	4%



Treatment Procedure

- SGRT tolerances were 1 mm and 1°
- SGRT reference capture taken before CBCT
- MD matches CBCT, shift patient and take another SGRT reference
- Linac is interlocked with SGRT
- Out of tolerance, repeat CBCT, shift and take SGRT reference
- Treated 55 patients between January 1, 2017 and September 30, 2020
- 25 patients had intra-fx 3D vector shifts ≥ 1 mm on CBCT

Shift summaries, median (range), mm		
Vector	1.5	1.0 6.6
Vertical	0.3	0-1.1
Longitudinal	1.4	0.2-6.2
Lateral	0.5	0-2.2
Rotation	0.0	0-1.5
Roll	0.1	0-1.0
Pitch	0.3	0-2.1

Simulated Dosimetry

- Shifted the isocenter in the TPS using the intra-fx CBCT shifts
- Ignored rotations
- Estimate of the delivered dose had the motion been undetected
- Assumed that the motion occurred before treatment began
- Evaluated PTV coverage, GTV dose and V12

Radiation Therapy for Brain Metastases: An ASTRO Clinical Practice Guideline

Vinai Gondi, MD,^a,* Glenn Bauman, MD,^b Lisa Bradfield, BA,^c Stuart H. Burri, MD,^d Alvin R. Cabrera, MD,^e Danielle A. Cunningham, MD,^f Bree R. Eaton, MD,^g Jona A. Hattangadi—Gluth, MD,^h Michelle M. Kim, MD,ⁱ Rupesh Kotecha, MD,^j Lianne Kraemer,^k Jing Li, MD, PhD,^l Seema Nagpal, MD,^m Chad G. Rusthoven, MD,ⁿ John H. Suh, MD,^o Wolfgang A. Tomé, PhD,^p Tony J.C. Wang, MD,^q Alexandra S. Zimmer, MD,^r Mateo Ziu, MD,^s and Paul D. Brown, MD

Table 7 Risks of symptomatic radionecrosis with WBRT and/or SRS

KQ4 Recommendation	Strength of Recommendation	Quality of Evidence (refs)
For patients with brain metastases, limiting the single-fraction V _{12Gy} to brain tissue (normal brain plus target volumes) to ≤10 cm³ is conditionally recommended. Implementation remark: Any brain metastasis with an associated tissue V _{12Gy} >10 cm³ may be considered for fractionated SRS to reduce risk of radionecrosis (see KQ1).	Conditional	Low 12,88
eq:abbreviations: KQ = key question; SRS = stereotactic radio surgery; WBRT = whole brain radiation the rapy.		

HyTEC Organ-Specific Paper: Brain and Eye

Single- and Multifraction Stereotactic Radiosurgery Dose/Volume Tolerances of the Brain

Michael T. Milano, MD, PhD,* Jimm Grimm, PhD,†
Andrzej Niemierko, PhD,‡ Scott G. Soltys, MD,§ Vitali Moiseenko, PhD,
Kristin J. Redmond, MD,¶ Ellen Yorke, PhD,# Arjun Sahgal, MD,**
Jinyu Xue, PhD,†† Anand Mahadevan, MD,† Alexander Muacevic, MD,†
Lawrence B. Marks, MD,§§ and Lawrence R. Kleinberg, MD¶

Thus, the QUANTEC recommendation to limit single-fraction V12Gy to ≤ 5 to $10~\text{cm}^3$ remains prudent, 20

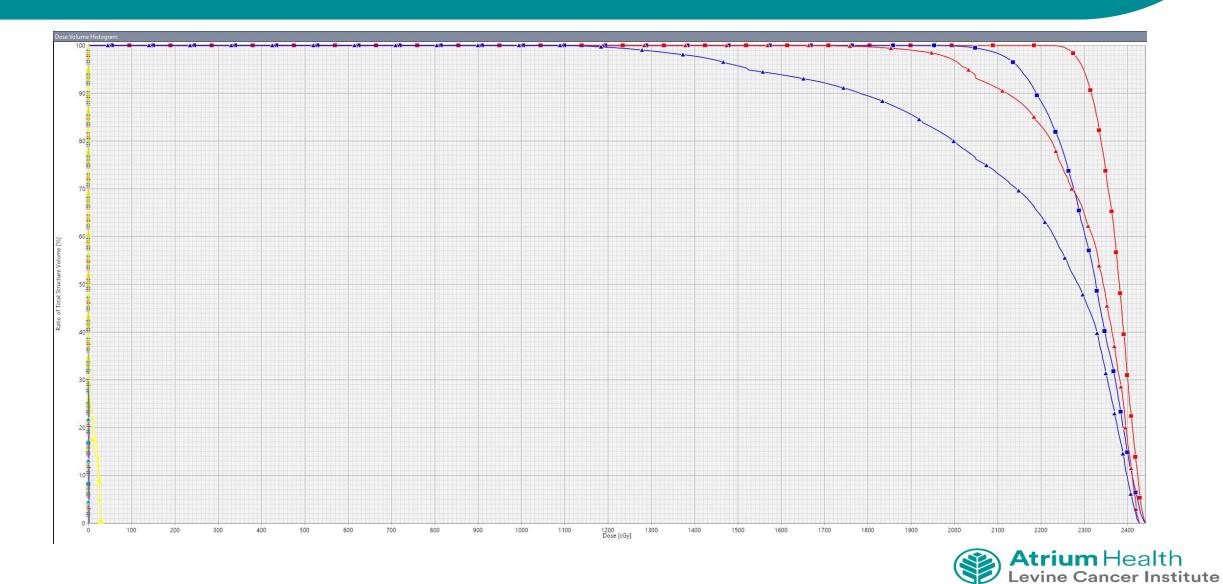

Results

Table 2 Dosimetric comparison of actual and simulated plans for all patients

Dosimetric indices	Actual	Simulated	Median difference (actual - simulated)	P value∗				
V12 (cc), median (range)	2.78 (0.32-151.25)	3.02 (0.33-151.32)	$-0.01 \; (-1.5 \text{-} 0.09)$.006				
GTV minimum dose (%), median (range)	102.80 (91.70-118.60)	93.80 (15.00-106.00)	15.8 (-1.9-86.08)	<.001				
PTV coverage %, median (range)	98.10 (98.00-99.00)	87.89 (36.60-99.56)	10.24 (-1.56-61.40)	<.001				
GTV minimum dose (cGy), median (range)	2225.0 (1376.0-2719.0)	1901.8 (271.1-2752.3)	308.2 (-52.3-1548.3)	<.001				
Abbreviations: GTV = gross tumor volume; PTV = planning target volume. * Wilcoxon signed rank tests.								

Example patient

Other Studies

Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery

Matthias Guckenberger*, Johannes Roesch, Kurt Baier, Reinhart A Sweeney and Michael Flentje

Table 1 Patient positioning errors prior to cone-beam CT based image-guidance (IG) and immediately following image-guided radiosurgery (IG-RS)

	Prior IG (r	n = 98)		Post IG-RS (n = 64)			
	Average	StDev	Max	Average	StDev	Max	
LR [mm]	0.1	2.1	10.3	0.1	0.6	1.8	
SI [mm]	-0.8	1.7	5.4	-0.3	8.0	3.0	
AP [mm]	-2.7	2.0	9.9	-0.2	0.4	1.4	
3D vector [mm]	3.9	1.9	11.9	0.9	0.6	3.0	
Max Rotation [°]	1.7	8.0	4.0	0.6	0.5	3.0	

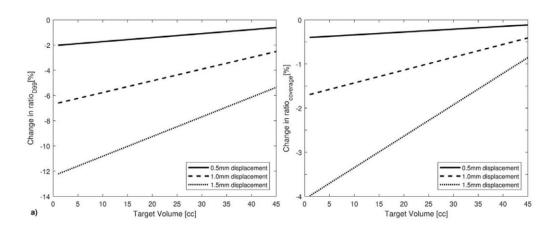

Rad Onc 2012, 7:63

Table 3 Dose distributions to the target with simulation of 0 mm, 1 mm and 2 mm safety margins 1) in the treatment plan (plan), 2) in the scenario of radiosurgery without image-guidance (No IG), 3) in the scenario of radiosurgery after image-guided correction of translational errors only and not rotations (IG trans) and 4) simulating errors observed immediately following image-guided radiosurgery (Post IG-RS)

initiculately following image guided fadiosargery (Fost for its)										
Safety margin		Plan		No IG	No IG		IG trans		Post IG-SRS	
0 mm	Absolute CI	0.96	±0.06	0.72	±0.19	0.96	±0.06	0.94	±0.07	
	<95% planned CI			91%		3%		14%		
1 mm	Absolute CI	1.00	±0.01	0.82	±0.19	1.00	±0.01	0.99	±0.01	
	<95% planned Cl			70%		0%		0%		
2 mm	Absolute CI	1.00	±0.04	0.90	±0.17	1.00	±0.04	1.00	±0	
	<95% planned Cl			40%		0%		0%		

Quantifying the Sensitivity of Target Dose on Intrafraction Displacement in Intracranial Stereotactic Radiosurgery

Jannie Schasfoort, MSc,^a,* Mark Ruschin, PhD,^b Arjun Sahgal, MD,^b R. Lee MacDonald, PhD,^b Young Lee, PhD,^b Carola van Pul, PhD,^c Patrick Langenhuizen, PhD,^d Patrick Hanssens, MD,^{e,f} Guus Beute, MD,^e Frits Wittkamper, PhD,^g and Jan-Jakob Sonke, PhD^g

PRO 12, 2022

Why is this important?

Predictors of Tumor Control in Patients Treated With Linac-Based Stereotactic Radiosurgery for Metastatic Disease to the Brain

David A. Schomas, MD,* John C. Roeske, PhD,* R. Loch MacDonald, MD, PhD,*† Patrick J. Sweeney, MD,* Neil Mehta, MD,* and Arno J. Mundt, MD*

Results: At a median follow up of 8.8 months, 11 BM failed (8.7%). The 1-and 2-year actuarial LC rates were 88.6% and 77.2%, respectively. The most significant factors correlated with LC were prescription (P = 0.0004) and minimum tumor (P = 0.002) doses, and tumor volume (P = 0.04). On multivariate analysis, the sole factor correlated with LC was minimum tumor dose (P = 0.03).

Radiosurgery for brain metastasis: impact of CTV on local control

Georges Noël^{a,*}, Jean Marc Simon^a, Charles-Ambroise Valery^b, Philippe Cornu^b, Gilbert Boisserie^a, Dominique Hasboun^c, Dominique Ledu^a, Bernadette Tep^a, Jean-Yves Delattre^d, Claude Marsault^c, François Baillet^a, Jean-Jacques Mazeron^a

In this study, margin was the only independent prognostic factor that was significant in multivariate analysis (P = 0.04). There was a decrease in the 24-month local control rate between the two groups according to minimum GTV treatment dose, $50.7 \pm 12.7\%$ and $89.7 \pm 7.4\%$ for metastases treated respectively with a mean GTV minimum dose of 14.6 Gy and 16.8 Gy (P < 0.001). This observation Significant correlation between gross tumor volume (GTV) D98% and local control in multifraction stereotactic radiotherapy (MF-SRT) for unresected brain metastases

Guillaume Dupic a,*, Lucie Brun a, Ioana Molnar b,c, Brice Leyrat a, Vincent Chassin d, Juliette Moreau a, Véronique Dedieu^d, Toufic Khalil^e, Pierre Verrelle^a, Michel Lapeyre^a, Julian Biau^a

GTV D_{98%} is a strong reproducible significant predictive factor of local control in stereotactic radiotherapy for brain metastases.

Am J Clin Onc, Vol 28, No 2, April 2005

R & O, 68, 2003

R & O, 154, 2021

Conclusions

- SGRT is an attractive option for patient set-up and intra-fraction monitoring
- Patients do move during SRS treatments possibly a lot!
- Continuous monitoring is necessary
- Intra-fraction motion can lead to underdoses and worse local control

