Use of Surface Guidance in the Pediatric Setting

We Treat Kids Better

Alisha Chlebik, B.S., R.T. (T.) Children's Hospital Los Angeles

I have no conflicts of interest to disclose

My Background

- Staff Radiation Therapist at Children's Hospital Los Angeles (CHLA) for 8.5 years
- Worked with VRT since its implementation at CHLA in September of 2013

Vision RT at CHLA

- Vision RT was implemented at Children's Hospital Los Angeles in September of 2013
- Initially therapists were reluctant to implement VRT and change the work flow
 - It took several months of trial and error to find the best work flow and methodology

Work Flow

- The patient is brought into the treatment room and positioned using their custom immobilization and indexing
 - Vacuum-assisted mouth piece for brain or head and neck with custom head mold with S frame
 - Body fix bag for any other part of the body
- The table is brought to the acquired position
- The patient is then set up using the VRT set up field
 - CHLA typically uses a VRT set up tolerance of 2mm for vert, long and lat and 1° for rotation and roll (pitch of 2° due to the difficulty of correcting pitch completely)

Work Flow Continued

- After the desired set up is achieved based on VRT a new monitoring reference is taken before leaving the room
 - The monitoring field is taken before IGRT to monitor for motion from the end of set up until applying shifts
 - We typically do this in room with gantry upright and images retracted to minimize camera blockage
- After leaving the room imaging is completed
- Before applying any shifts we verify the patient is still within tolerance
- We capture a new reference after applying shift to monitor the patient during treatment

Patient Monitoring

- For many patients we would get them as close as possible to "zero" on VRT, however there were still some delta's
 - This caused some uncertainty if the patient moved after we leave room or during treatment

Patient Monitoring

 We now zero the delta's while in the room with the patient by taking a new monitoring reference and any movement is then easily <u>quantified</u>

VRTmm	-0.2	1
LNGmm	-0.4	
LAT mm	-0.2	Ļ
MAGmm	0.5	
Rtn°	0.2	
Roll [°]	-0.1	ų.
Pitch °	0.2	

Patient Monitoring

- In order to be able to both monitor the patient as well as maintain a set up reference, we implemented the use of two fields (set up and monitoring)
- We use the set up field for initial positioning and then use the monitoring field for the rest of treatment

Set Up Field

- The set up reference image is used to position the patient daily
 - The first day of treatment we use the DICOM data to set up the patient
 - We capture a new reference image under set up if necessary when the films are optimal (typically the first day)
 - We do not routinely recapture the set up reference
 - » May be done if child has lost or gained a lot of weight or was bloated at the simulation and now is back to "normal"

Monitoring Field

- After we have filmed but before we apply shifts we verify the patient is still within tolerance
- We then apply shifts and take a new monitoring reference image (replacing in-room acquired reference) to use for treatment monitoring

Treatment Areas

- We use Vision RT for a variety of treatment areas including: Chest, abdomen, pelvis, craniospinal, SRS and FSRT, head and neck, and extremities, DIBH
- Each treatment area has different methods of implementation to make it the most beneficial

Chest

- Chest ROI's sometimes interfere with a central line (awake children as well)
 - We adjust our ROI's to not include the central line
- We try and wrap the ROI around laterally to at least mid depth of the patient
 - We have adjusted how we make our body fix bags and now only make the bag to mid depth
 (previously as high as possible)

Abdomen

- ROI's may have to extend outside the treatment area due to lack of contours in this area as well as the size of younger patients
 - We also try to create the ROI to at least mid depth to give VRT as much information as possible

Pelvis

- Pelvis ROI's go inferior to the umbilicus but is dependent on the child as to how inferior
 - Diapers in the young children limit how far down to ROI can go
 - We tuck down the top of the diaper to move as much out of the way as possible
 - Adolescents are more likely to resist and we try to keep them covered as much as possible
 - We now have them take of underwear and cover with washcloth if we are not getting enough data with just the lower ROI

Extremities

- We use body fix for extremities
- For the patients with smaller extremities due to age, we have to expand the ROI outside of the treatment area to capture enough surface area
- The ROI also has to wrap around past mid depth to capture the contour of the extremity

CSI- In-Room setup (Body ROI's)

- Because we only adjust the patient, vertical may be left outside of setup tolerance
 - The pitch may be out of tolerance as well
 - We have found weight loss or constipation to be factors (we take new references if it becomes the new normal)

FSRT and SRS

- We now use Vision RT along with our standard head immobilization process.
 - Vacuum-assisted mouth piece and custom head rest

SRS and FSRT

- Prior to the start of treatment:
 - Patient is set up based on VRT and a new monitoring is captured
 - CBCT is performed and shifts are applied
 - A new VRT reference is taken immediately after the CBCT
 - The couch is rotated to any couch angles required during the treatment and a capture at each angle is taken (gantry at 0)
 - This does not override the earlier VRT data taken after the CBCT
 - After all couch angles are captured the couch is brought back to the finalized CBCT position and the patient is checked verify the patient has not moved.
 - Treatment begins
 - At each couch angle the movement of the patient is able to be assessed based on the monitoring capture's taken after the CBCT

Benefits of Vision RT

- Elimination of all skin marking
- Decrease in repeat imaging for set ups
- Treatments are more time efficient
- Allowing younger kids to be treated

without anesthesia due to monitoring

 Palliative cases saw a major benefit due to being able to be treated quickly without the need for anesthesia, less immobilization, and could go home quicker

Decreased Imaging

- The amount of repeated films have decreased
 - This happened slowly over a period of time (3-6 months) as we became more familiar and confident with VRT
 - It took making adjustments to the work flow and creating a process which we all agreed upon such as what VRT deviations we were willing to accept before filming
 - Tolerances for set up deviations using VRT prior to imaging:
 - Vertical, longitudinal and lateral are typically less than 2mm
 - Rotation, roll and pitch are typically less than 1 degree

Efficiency

- Treatment set ups have become more efficient since implementing VRT into the work flow
 - We use indexing, tight tolerances, and the "auto-go" feature on True Beam which allows us to be within millimeters of isocenter
 - By using VRT we are able to adjust multiple translations at once (adjusting roll while laterally moving the patient)
 - Typically we minimize any big translations (most often vertical and/or longitudinal) and then then fine tune the set up and adjust any roll, rotation or pitch

Benefits of Patient Monitoring

- We now have more confidence that the child has not moved since initial set up
 - Sometimes small movements are hard to be visualized by the human eye (or CCTV), however VRT allows us to see these smaller changes
 - Younger patients (4 and 5 year olds) are now more routinely done awake

Benefits of using VRT on CSI

- We have seen a large decrease in the number of repeated films
 - Visualizing and correcting the roll for the pelvis before CBCT has been the greatest help
 - Because we use Rapid Arc for treatment the roll is important
- Times were reduced to a total of 15-35 minutes per case for rapid arc treatments (Previously this could take anywhere from 45 minutes to an hour and a half)
 - Set up- 5-15min
 - Imaging- 5-10 min
 - Treatment- 5-10 min

Troubleshooting

- Limited body contours in the pediatric population
- Multiple lines and/or tubes in ROI's
- Belly breathing
- Increased movement in unsedated children
- Decreased cooperation in children
- Blanket or other covering inadvertently left on to keep child warm

Multiple lines and/or tubes in ROI

- Younger children are treated with anesthesia which adds extra lines and/or tubing to the patient and these can interfere with the ROI and give inaccurate data
 - We have had to adjust patches to exclude the central lines and move other monitoring lines out of the way if possible
 - ROI's may be larger than the treatment field and sometimes exclude part of treatment field if it encompasses a patients access line

Multiple Lines/Tubes in ROI

Multiple lines and/or tubes in ROI

Body Contour

Body Fix Bag

Belly Breathing

- We have found that children (young children especially) are more likely to be belly breathers
- This affects the longitudinal deltas with each breath instead of the expected vertical deltas
 - By knowing a particular child is a belly breather we are aware the longitudinal deltas may "jump" more than the others deltas
 - Gated capture may not completely correct the problem but may lessen the extent
 - We will typically add 1 to 2 seconds to the Beam-Off threshold to account for this

Affect of Belly Breathing

At peak breathing phase

At reference breathing phase

Managing Movement

- Unsedated children have a propensity to move more than adults and adolescents
 - Children who are not comfortable with how we have positioned them may readjust themselves
 - We may minimize moving them as long as they are within VRT setup tolerance and use the 6 Degree of freedom couch to correct the remaining difference through imaging
 - We use VRT to monitor the child for any motion and if they do move the MMI will Beam-Off.

Avoid Blanket or Clothing in ROI

- A blanket or other covering may be inadvertently left on to keep child warm
 - By checking the VRT computer while setting up we look to see if anything (blanket or piece of clothing) is within the ROI of the patient
 - Sometimes anesthesia or other personnel may cover the patient with out us noticing or the patient may cover themselves as well
 - The can lead to an incorrect set up
 - We look to make sure there is nothing obvious in the field as well as taking a treatment capture if there is any doubt

Improving Cooperation

- Children are less likely to cooperate for many different possible reasons. A few may be:
 - The child may be anxious
 - Explaining at their level what we will be doing can decrease anxiety significantly
 - If the child is uncomfortable they are more likely to move
 - For those who fidget constantly we give them options to what they can move
 - If we are treating chest we may allow them to wiggle their foot, we may give them Playdoh or a stuff animal to hold, ect.
 - The red lights from the camera system sometimes cause the younger kids to move or became anxious
 - We have told them they can close their eyes or watch the TV

Cooperation Cont.

 Creating a mold for a stuffed animal to explain the process and show what the mold and/or VRT lighting will look like may help reduce anxiety the child may have.

You han THE R Children's Hospital Los Angeles We Treat Kids Better