Benchmarking maprt[®] and first clinical experience: a novel solution for collision-free non-coplanar treatment planning

Igor Bessieres, Ilyas Achag, Mathieu Gonod

Medical Physicists

Centre Georges-François Leclerc, Dijon, France

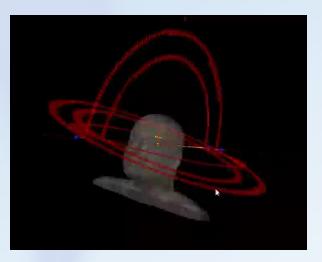
- Introduction & clinical context
- What is maprt[®]?
- Accuracy evaluation of maprt[®]
- First experience of maprt[®]
- Conclusion

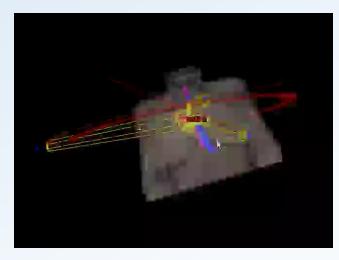
Introduction & clinical context

Introduction

Centre Georges-François Leclerc, Dijon, Burgundy, France

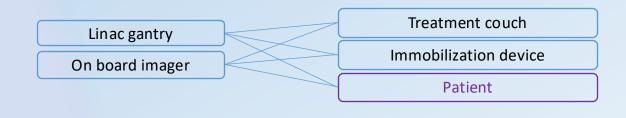
- More than 2100 patients per year treated by RT
 - 90% modulated RT: IMRT or VMAT
 - 30% SBRT
- 5 linacs:
 - 2 Halcyon (Varian), 1 Truebeam (Varian), 1 Truebeam stx (Varian): all equipped with alignRT
 - 1 MRIdian (Viewray)
- alignRT users since 2020
- maprt[®] users since September 2023





- RT in the 2020s: sharp increase in indications for SBRT and reirradiation
 - Increasing complexity of RT planning (more OAR dose constraints)
 - More non coplanar beam configurations
 - Increase the risk of undeliverable plan \rightarrow collision risks
 - Increase of dry run for plan testing

Hippocampal-sparing whole brain radiotherapy



Lung tumor close to OAR

Clinical context

• Different types of collisions

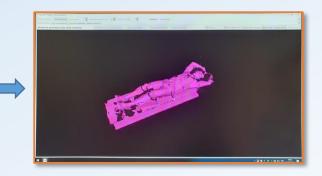
• Today practices: Dry run (with or without patient)

Avoid collision risk Increase linac occupancy Increase RTT/physicist workload Increase patient time

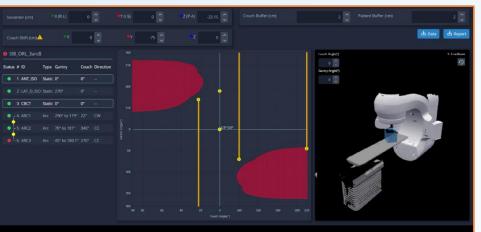
Solution: collision detection tool with limited additional workload

What is maprt[®]?

Introducing mapRT


• maprt[®] works with:

2 additional lateral cameras installed at the CT scan

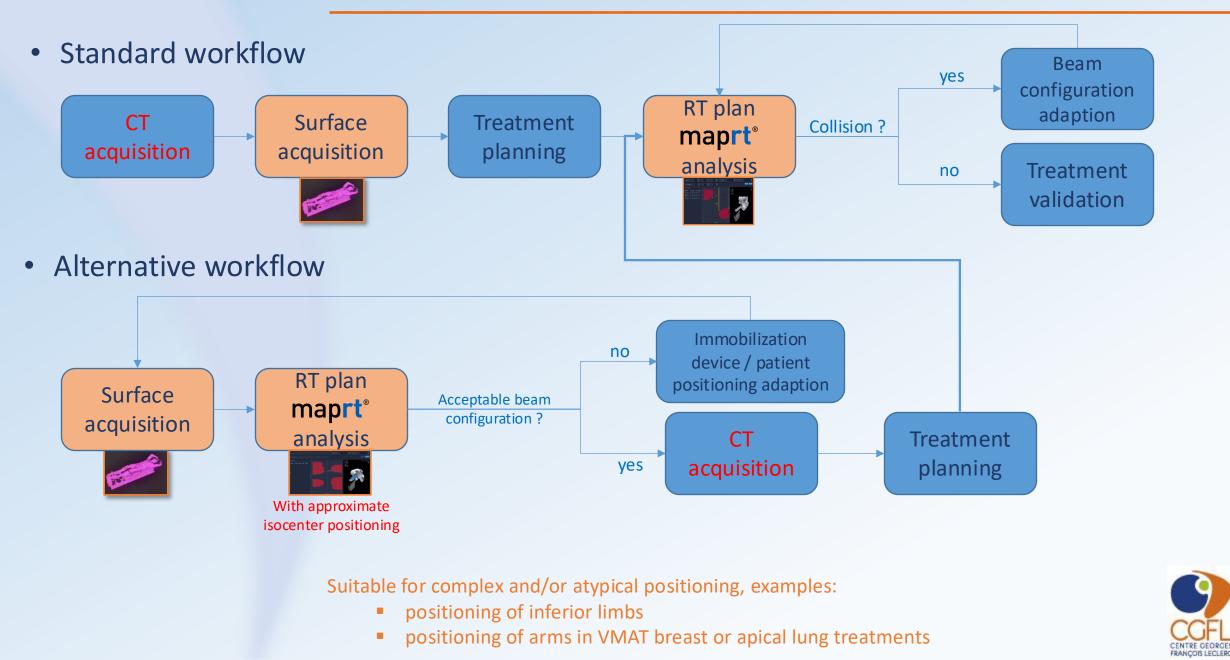


1 acquisition software: patient surface and immobilization devices

1 analysis software: simulation of the patient and linac interactions

Introducing mapRT

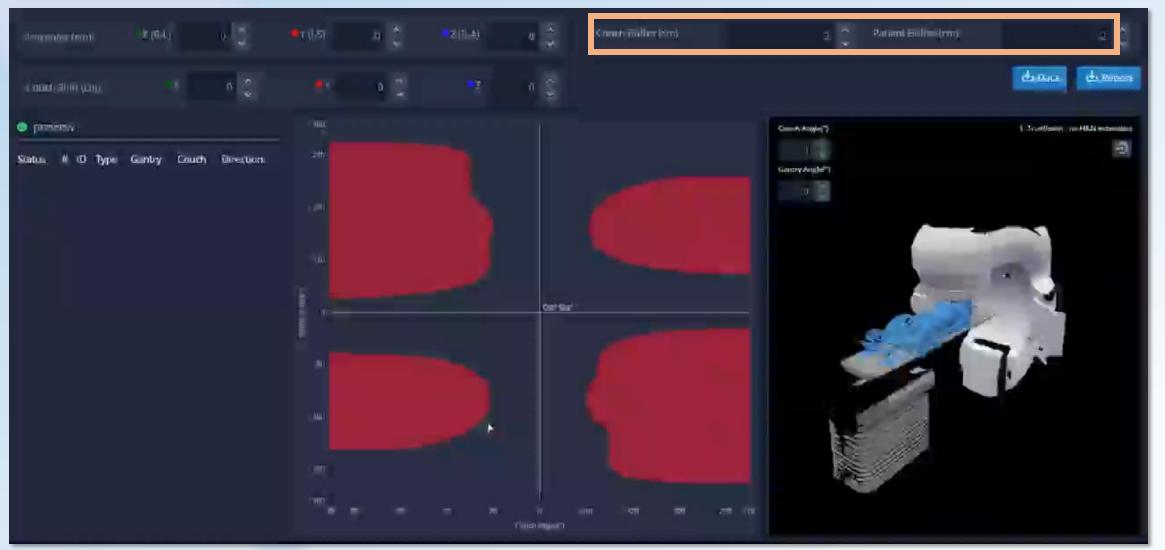
• Analysis software:



CENTRE GEORGES

9

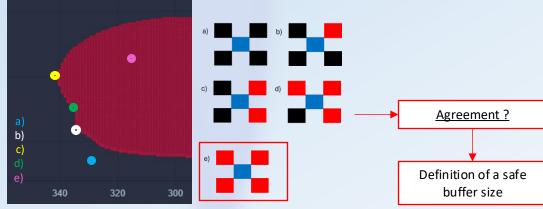
Introducing mapRT

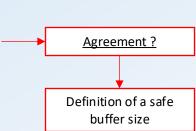

10

Accuracy evaluation of maprt[®]

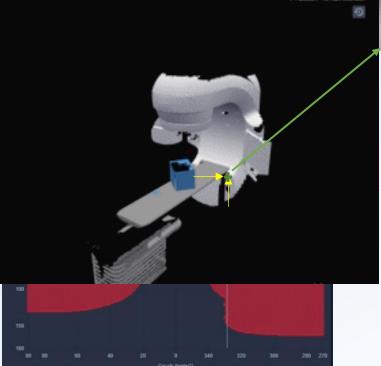
Accuracy study

How accurate and reliable are the collision limits predicted by **maprt**[®]?

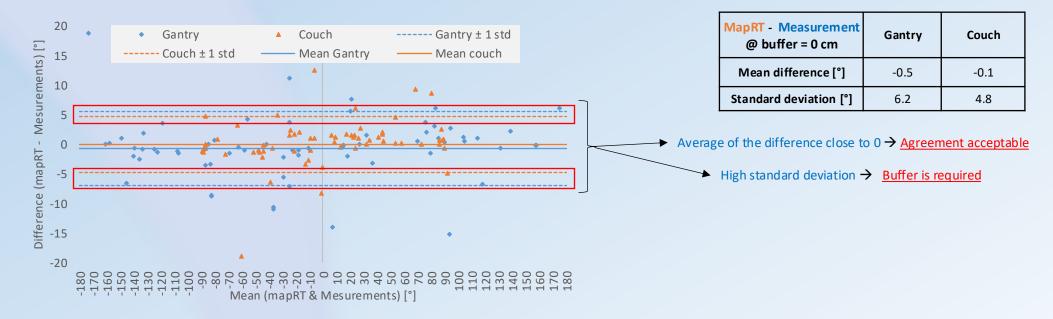

Accuracy study: methods


Use of a simple polystyrene phantom $30 \times 35 \times 40$ cm³

- 1. 64 limit positions selected on the clearance map with buffer 0 cm
- 2. Measurement on the linac Gaptry angle fixed \rightarrow <u>Couch limit angle determining</u> Couch angle fixed \rightarrow Gantry limit angle determining
- 3. Generation and export of clearance map at different buffer size




4. VBA script analysis



Clearance map with buffer 0 cm

Characterization of the limit position according to the buffer size

Accuracy study: results

Bland-Altman plot Measurement vs mapRT with a buffer size = 0 cm

Safe buffer

Agreement rate between measurements and mapRT clearance map according to the buffer size

Buffer	0		0.5		1	1.5	2	3	4	5	
All - All		4.6%		58.5%	64.6%	73.8%	80.0%	95.4%	98.5%	98.5%	
Machine - Phantom		4.3%		47.8%	56.5%	78.3%	87.0%	100.0%	100.0%	100.0%	
PID - Couch		0.0%		0.0%	0.0%	100.0%	100.0%	100.0%	100.0%	100.0%	
Machine - Couch		9.5%		61.9%	71.4%	76.2%	85.7%	100.0%	100.0%	100.0%	
kVd - Couch		0.0%		0.0%	0.0%	0.0%	0.0%	0.0%	100.0%	100.0%	
kVs - Couch		0.0%		58.3%	58.3%	58.3%	58.3%	91.7%	91.7%	91.7%	

CENTRE GEORGES FRANCOS LEGIERC FRANCOS LEGIERC

From buffer size = 3 cm \rightarrow 100% collisions (linac/table/PID/Patient) are well predicted

mapRT v1.1: kVd and kVs only one position modelized

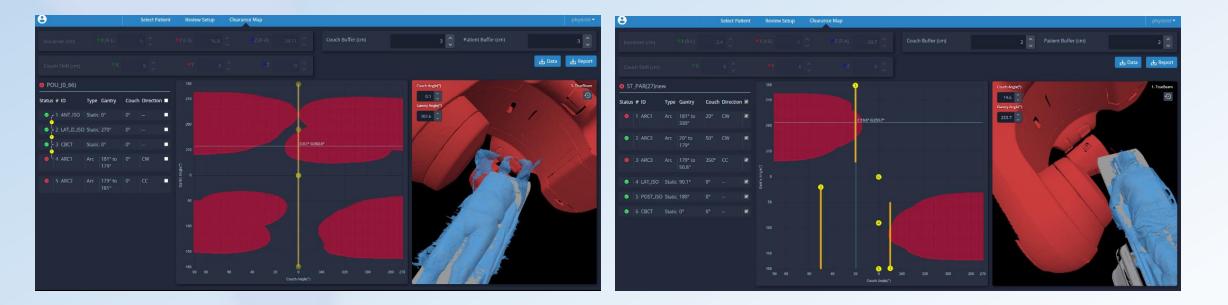
First experience of maprt[®]

maprt[®] use on a 11-month period

- September 2023: MapRT v.1.0
- February 2024: MapRT v.1.1 (small bug fixed)
- June 2024: MapRT v.1.2 (software optimization)

900 treatment plans prospectively checked for collisions during planning (by dosimetrist or physicist)

- On two linacs: Truebeam (Varian) and TPS: Eclipse v17 (Varian)
- All treatment technic : VMAT, IMRT and Conformal RT
- Coplanar and Non coplanar beam configurations
- No cancer site restriction
- 2 cm buffer size based on VisionRT recommendations (accuracy study not finalized yet)



- 22 plans (2.4%): collision anticipated/avoided with mapRT
- 6 plans (0.6%): collision detected during dry run/first session
 1 with kVd
 - 1 with immobilization device too thin...
 - 4 others due to oversights: no 3D surface acquired at simulation or plan not tested in mapRT
- Excluding these particular situations, no treatment was postponed or cancelled due to collision when using mapRT
- 165 plans (18.4%): optimized based on clearance map to increase the range of arc amplitude, couch rotation or isocenter positioning

Experience: results

• Examples of clinical collisions detected thanks to maprt[®]

Lung case planned with coplanar arcs where the machine collisioning the elbow and the immobilization device Cranial steretotactic planned with non-coplanar arcs where the machine collisioning the elbow of the patient even if it is along the body

- System is reliable even with a reduced 2 cm wide buffer value
- Excluding 4 cases due to human insights, only 2 out of 900 plans (0.2%) encountered a collision
- 1 of these collisions due to an inherent limitation of the kVd modeling (several positions of kV imager are available since July 2024)
- 22 collisions cases avoided were for coplanar beams (arms above the head and posterior isocenter): collisions are not only a concern for non coplanar treatment → all treatment could benefit from MapRT
- More than 10-year long experience of non coplanar treatments use for intra and extracranial sites
- \rightarrow explains the limited number of collisions detected (22/900, 2.4%)
- Probably greater for clinics newly starting a non coplanar treatments program for extra cranial pathologies

Conclusion

Conclusion

- mapRT intrinsic accuracy evaluated
- For a safe use, the buffer size (patient + couch) at:
 - 3 cm according to our accuracy study including very singular limit points on the clearance map
 - 2 cm according to our clinical experience including only classical limit points
- Beam configuration secured and optimized
- Next step: remove systematic dry runs
- Time saved for the planner, the patient and the RTT

mapRT is not only a collision prediction tool → simplify and make safer non coplanar workflow

(see Mathieu Gonod's presentation this afternoon)

More information about this work in this article (accepted, in production):

Journal of Applied Clinical Medical Physics

Status: In Production

 Benchmarking MapRT and first clinical experience: a novel solution for collision-free non-coplanar treatment planning

 Open Access

 DOI: 10.1002/acm2.14572

Mathieu Gonod¹, Ilyas Achag¹, Jad Farah², Léone Aubignac¹, Igor Bessieres¹
1 – Department of Medical Physics, Centre Georges-François Leclerc, Dijon, France

2 – Sales and clinical applications, Vision RT Ltd, London, United Kingdom

O In Production

Thank you for your attention

ibessieres@cgfl.fr

