

The Implementation of SGRT for DIBH patients using SimRT and AlignRT InBore

Hannah Nayee, Samantha Allison and Gail Anastasi

Royal Surrey NHS Foundation Trust

The Royal Surrey Cancer Centre

7 Linac department

2 sites – Guildford & Redhill

Installed SimRT and Replaced 2 c-arm linacs in Redhill with 2 ring gantry linacs with AlignRT

Continuing our linac replacement over the next few years → more SGRT installations

Why SimRT & AlignRT InBore?

Research

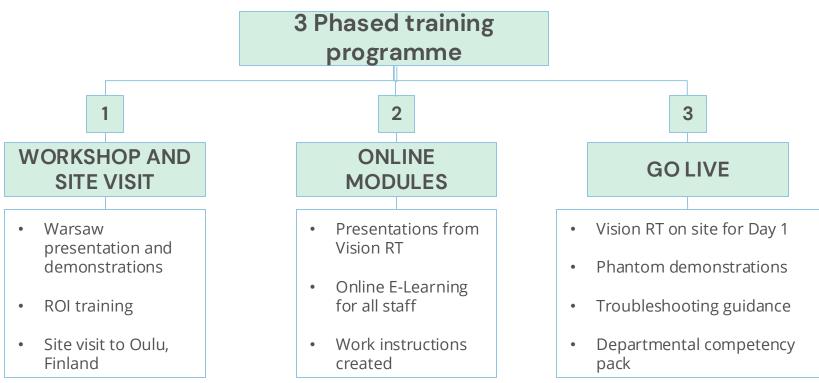
- Presentation from 3 vendors
- Comparison of specifications and research evidence available

Considerations

- Ease of use
- Communication
 with machine
- Quality of training
- Future proofing

Site specific

- Small bunkers
- VisionRT offers only clinically available in bore solution



Installation Project SGRT study Working days and party conferences Networking Forums Varian 3 phased Vision RT apps training training

SimRT 1 system

AlignRT 2 integrated systems

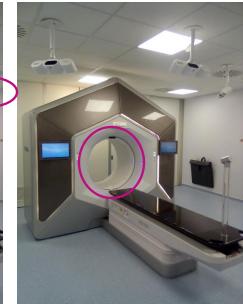
SimRT 1 system

AlignRT 2 integrated systems

SimRT 1 system

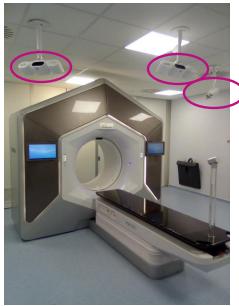
AlignRT 2 integrated systems

Out-of-bore


SimRT 1 system

AlignRT 2 integrated systems

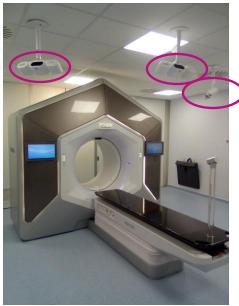
Out-of-bore

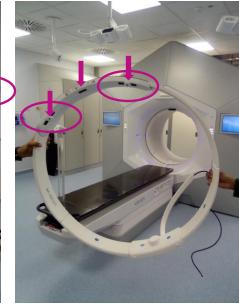


SimRT 1 system

AlignRT 2 integrated systems

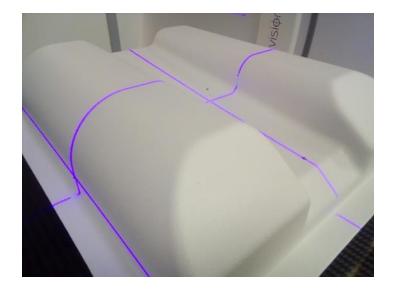
Out-of-bore




SimRT 1 system

AlignRT 2 integrated systems

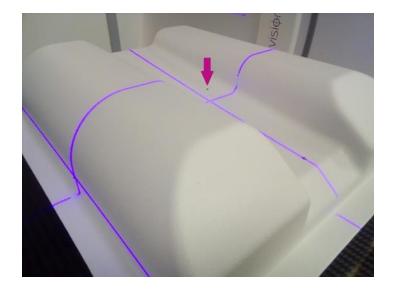
Out-of-bore



Commissioning from SimRT to AlignRT – VRT movement

Preamble – affix **5** *ball-bearings* (2mm Ø) to leg-phantom

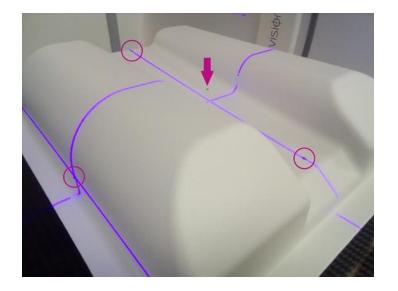
- 1 ball-bearing to indicate location of isocentre in treatment-plan
- 4 ball-bearings to indicate laser/tattoo set-up



Commissioning from SimRT to AlignRT – VRT movement

Preamble – affix **5** *ball-bearings* (2mm Ø) to leg-phantom

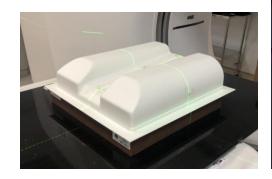
- 1 ball-bearing to indicate location of isocentre in treatment-plan
- 4 ball-bearings to indicate laser/tattoo set-up

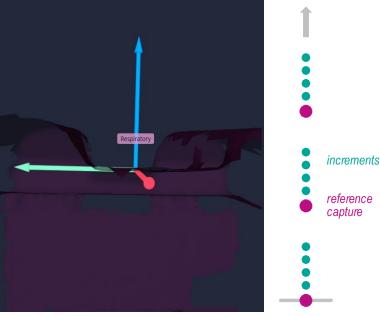


Commissioning from SimRT to AlignRT – VRT movement

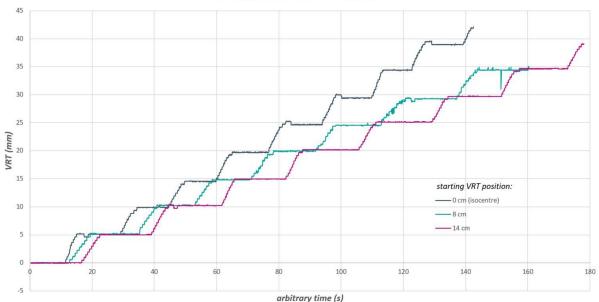
Preamble – affix **5** *ball-bearings* (2mm Ø) to leg-phantom

- 1 ball-bearing to indicate location of isocentre in treatment-plan
- 4 ball-bearings to indicate laser/tattoo set-up

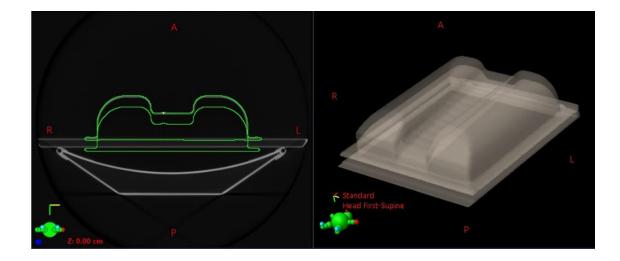



Commissioning from SimRT to AlignRT – VRT movement Static accuracy of SimRT

- Method place leg-phantom on CT-couch, propped up on support
 - align central ball-bearing to isocentre in SUP-INF and L-R directions
 - take reference capture of phantom surface
 - fine-tune alignment of ball-bearing to isocentre in ANT-POST direction
 - select VRT starting position (between 0 and 14 cm above isocentre)
 - take new reference capture of phantom surface
 - start monitoring patch
 - displace CT-couch in 5-mm increments

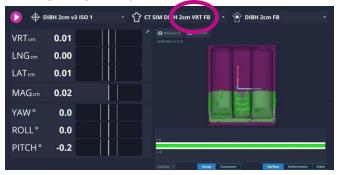

Tolerance \leq 1 mm (*ESTRO/ACROP*)

Commissioning from SimRT to AlignRT – VRT movement Static accuracy of SimRT



VRT displacement measured by SimRT

Commissioning from SimRT to AlignRT – VRT movement Static accuracy of AlignRT (moving DICOM surface)


- Method acquire a low-dose CT-scan of the leg-phantom
 - acquire a planning CT-scan of the phantom
 - in Eclipse, on each CT-dataset, create a body-structure
 - on the low-dose CT-dataset, shift the body-structure by 2.00 cm posteriorly (to bypass uncertainty in couch displacement)

Commissioning from SimRT to AlignRT — VRT movement Static accuracy of AlignRT (moving DICOM surface)

Out-of-bore

1. align using FB body-structure

2. monitor using BH body-structure

Commissioning from SimRT to AlignRT — VRT movement Static accuracy of AlignRT (moving DICOM surface)

Out-of-bore

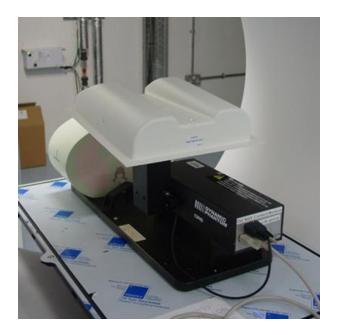
Results

1. align using FB body-structure

2. monitor using BH body-structure

In-bore

3. translate phantom into bore, then monitor using FB body-structure


4. monitor using BH body

- breath-hold position measured within 0.5 mm of its nominal value by both camera systems
 - identical accuracy achieved with isocentre shifted by 7.5 cm SUP (a test of the FoV)

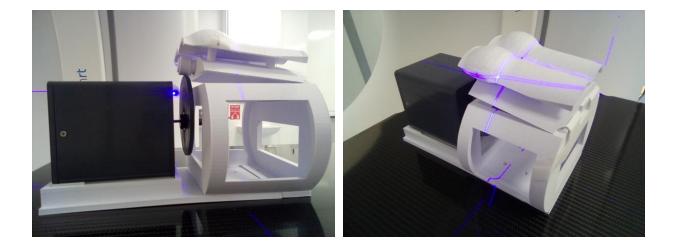
Commissioning from SimRT to AlignRT — VRT movement Dynamic accuracy of AlignRT (moving phantom)

- Method set up CIRS dynamic phantom
 - place leg-phantom on top of surrogate platform
 - take reference capture of leg-phantom with out-of-bore cameras
 - start motion
 - monitor motion using out-of-bore cameras
 - translate phantom assembly into bore
 - monitor motion using same reference capture and now using in-bore cameras

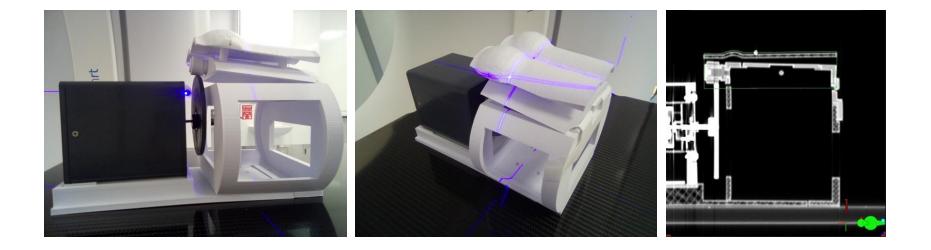
Commissioning from SimRT to AlignRT — **VRT movement** Dynamic accuracy of AlignRT (moving phantom)

11 10 9 8 7 6 5 4 3 2 VRT (mm) 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 20 30 40 50 60 70 80 time (s) 20.0 mm nominal range $-10.0 \rightarrow +10.0 \text{ mm}$ range measured by out-of-bore cameras $-9.8 \rightarrow +10.2 \text{ mm}$ range measured by in-bore cameras

Results • displacements measured within 0.2 mm of their nominal values by both camera systems


DIBH – out-of-bore versus in-bore

E2E QA from SimRT to AlignRT – 6DoF movement


Preamble – 3d-printed phantom designed by Matt Jones (Head of Dosimetry and QA) [work-in-progress, intended for monthly-QA]

E2E QA from SimRT to AlignRT – 6DoF movement

Preamble – 3d-printed phantom designed by Matt Jones (Head of Dosimetry and QA) [work-in-progress, intended for monthly-QA]

E2E QA from SimRT to AlignRT – **6DoF movement** VRT breathing trace in SimRT

6 5 capture DOWN VRT (mm) 2 capture UP 1 0 0 5 10 15 20 25 30 35 time (s)

Royal Surrey Cancer Centre

Dependence of measured VRT on optical patch

Result • small dependence of measured VRT displacement on captured surface?

E2E QA from SimRT to AlignRT — **6DoF movement** 6DoF breathing trace in AlignRT

Method

- At the CT-scanner, scan the 3d-printed phantom in two positions:

- a DOWN position mimicking a free-breathing surface
- an **UP** position mimicking a breath-hold position
- In Eclipse, create a body-structure for each position

Preliminary results

- position phantom down
- monitor DOWN surface

\sim	

position

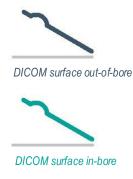
DICOM surface

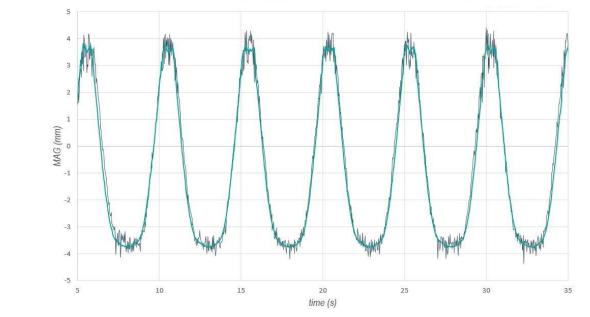
- position phantom up
- monitor UP surface

on

DICOM surface

Out-of-bore





E2E QA from SimRT to AlignRT — **6DoF movement** 6DoF breathing trace in AlignRT

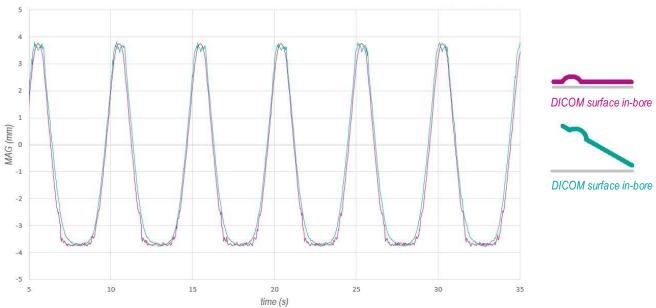
Preliminary results

- enable RPM motion
- monitor UP surface
- compare out-of-bore versus in-bore

6DoF breathing trace – out-of-bore versus in-bore

E2E QA from SimRT to AlignRT — **6DoF movement** 6DoF breathing trace in AlignRT

Royal Surrey Cancer Centre


Preliminary results

- enable RPM motion
- monitor in-bore
- compare UP versus DOWN surface

 no dependence of measured MAG displacement on reference surface?

Future improvements?

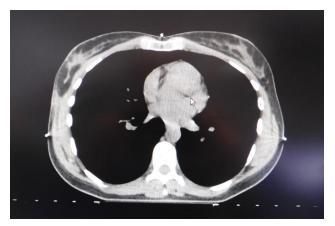
- glue 3d-printed components together
- mark UP and DOWN positions on RPM wheel
- 3d-print larger surface
- change colour of surface to darker shade

6DoF breathing trace – dependence on reference surface

Clinical Introduction of SimRT

While our physics team were working hard on commissioning SimRT....

- Creation of Daily QA work instructions
- Creation of breast DIBH & 4DCT work instructions
- Complete VisionRT phase 2 online training
- Creation of training records
- Change to breast DIBH scanning protocol to include a low dose free breathing scan



Change in DIBH CT Scanning Protocol

Low dose free breathing scan


Standard dose breath hold scan

Using SimRT to monitor breath hold

- 1. Set up patient using exterior lasers
- 2. Take surface capture of patient
- 3. Place tracking patch

Using SimRT to monitor breath hold

- 4. Turn on monitoring
- 5. Ask patient to breath hold
- 6. Ensure adequate depth and stability of breath hold
- 7. Repeat to check for consistency of breath hold
- 8. Move patient to bore isocentre and take surface capture
- 9. Move to most inferior scan level and take surface capture

Considerations for patch location

Clinical Introduction of DIBH with AlignRT Inbore

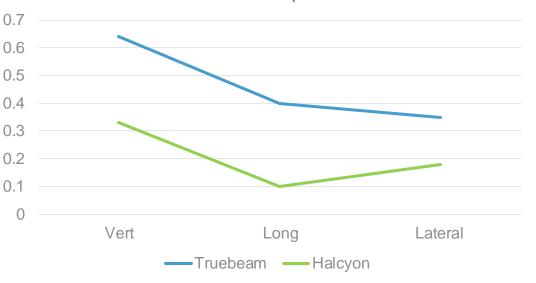
- Previously used Varian RPM
- Introduced slowly into workflow
- Planning team needed time to adjust the planning for Halcyon
- Vision RT on site for demonstrations of workflow
- Cascaded training to rest of team
- Introduced 1-2 more DIBH breast patients a week to continue training and get planning team training complete too

DIBH Treatment Workflow using AlignRT

Free breathing set up	Set up in free breathing to free breathing CT body	
DIBH set up	Switch to DIBH ref body and patient breathes in	
Load	Load the patient in to the bore	
InBore position	Check the patients FB and DIBH position against the RTD	
Take CBCT in DIBH	Patient to be in DIBH for CBCT and when applying moves – take a 'this session only' capture	
Treatment	Deliver treatment in DIBH with real time monitoring	

DIBH Workflow video

• •



Set – Up Accuracy Audit

Breast patients

- Tattoo set up on Truebeam VS SGRT on Halcyon
 - Patients set up to tattoo Imaging isomoves ranged from 0.5-1.5cm
- Patients were up to 2.5cm distance from their reference marks
- Average imaging isomoves for all SGRT were under 0.4cm

Breast set up value

Why Varian Halcyon & Ethos?

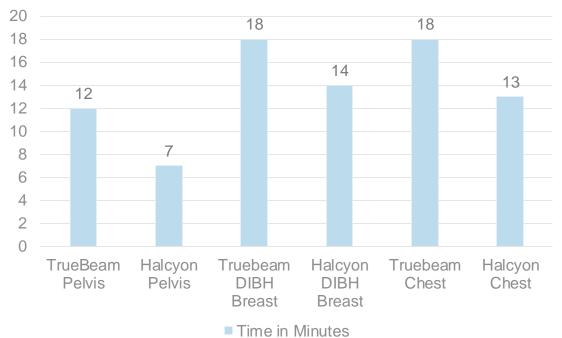
Ease of use

HyperSight Imaging

Delta-Couch Shift

Increase capacity

Fewer delays



Time in motion audit

Time in Minutes

- Treatment type– IMRT vs RapidArc
- Pelvis reduction of 4-5 mins
- DIBH Breast reduction of 4 mins
- Chest reduction of 5 mins

Our SGRT journey so far

Treated so far...

- All pelvis patients
- Chest
- Breast/SCF/DIBH +/bolus (multi-isocenter)
- Palliative (all sites)
- Haematology H&N
- Abdomens
- PA nodes
- Radical brains
- Limbs

Future cases...

- Adaptive bladder treatment
- DIBH breast to include IMC
- Lung SABR
- Lower lung SABR using compression belt
- Tattooless radiotherapy

Thank you

- The VisionRT team
- The entire team at RSFT (Guildford & Redhill)
- Radiographers
- Physics (especially Dina Roshd for commissioning data & slides)
- Engineers

hannah.nayee@nhs.net s.allison1@nhs.net gail.distefano@nhs.net

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u> and infographics & images by <u>Freepik</u>

Questions?