BEFORE THE INK DRIES IMPLEMENTING A TATTOOLESS WORKFLOW

Tomas Moloney John Peter Sastrodemedjo Rositsa Dukova Tasheva Una Cooper Paul Totten

LIFE CHANGING MEDICINE

Presentation content

Clinical audit

- Pre-audit
- Clinical study
- Results
- Findings

Post-audit

- Clinical wins
- Continuous development of SGRT workflows
- Case studies

Towards tattooless

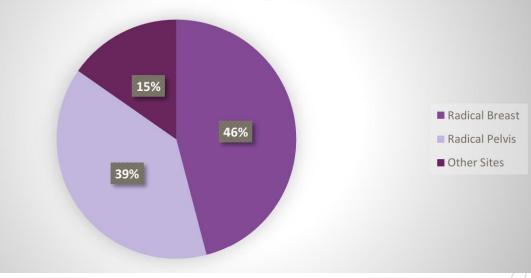
Test Name	Maximum/Threshold	Error Read	PASS/FAIL
Relative Shift Accuracy Test LNG + 10 mm	LNG error < 1.0 mm	0.00 ± 0.04 mm	PASS

плее/гли

		Test Name	Maximum/Threshold	Error Read	PASS/FAIL
• Introduction		Relative Shift Accuracy Test LAT + 10 mm	LAT error < 1.0 mm	0.24 ± 0.11 mm	PASS
PH1 super user					
training	 Patient workflows 	Test Name	Maximum/Threshold	Error Read	PASS/FAIL
30 th – 31 st Oct 2023	• System use	Relative Shift Accuracy Test VRT + 10 mm	VRT error < 1.0 mm	0.07 ± 0.05 mm	PASS
		147 (2012) & 302	. ,		
	& Commissioning • End-to-en	d testing (test pati	ient)		\sim
	5 th Jan 2024 • SGRT daily	$u \cap \Lambda$			
	• SORT daily	y QA			V
	practical sossions	Physics and RTs oUser and workflo	• •	ecords √	
		RT Go-live ! th Jan 2024		LIF	PPMC CHANGING MEDICINE

Clinical Audit Objective

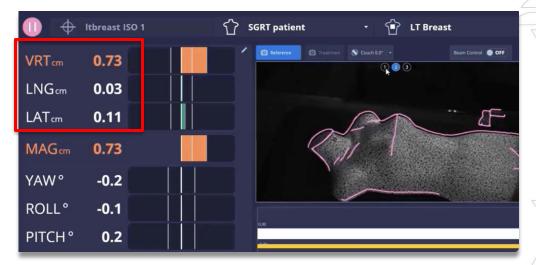
• To validate the accuracy of SGRT setups in comparison to tattoo setups


CHANGING MEDICIN

• 100 treatment sessions

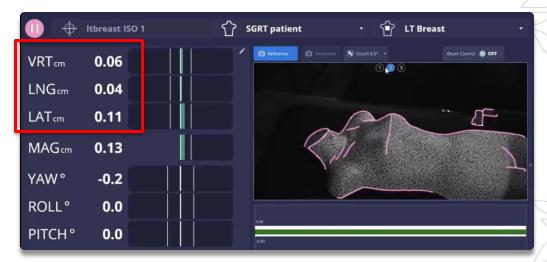
Study design

- Only pelvis (39) and FB breast cases (41) were included in the analysis
- Other sites consisted of palliative and abdomen cases


Breakdown of Valid Data per Treatment Site

Data acquisition

- Patient aligned using tattoos and then planned shifts to isocentre were applied as per departmental policy
- Postural video -> RTDs recorded (positioning errors from tattoos)


Data acquisition

- Postural video was then used to adjust for any residual corrections
- RTD values recorded (positioning errors from AlignRT)

<u>IGRT:</u>

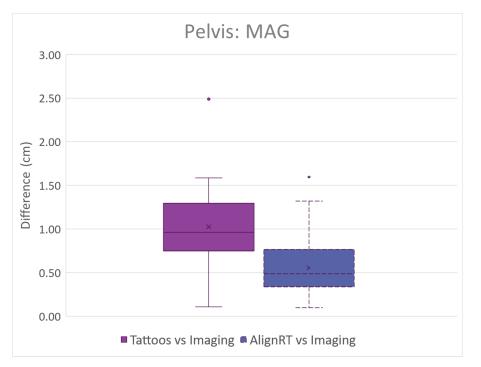
- Patient's position verified with CBCT
- Post-CBCT shifts recorded

*(only translational values used in audit)



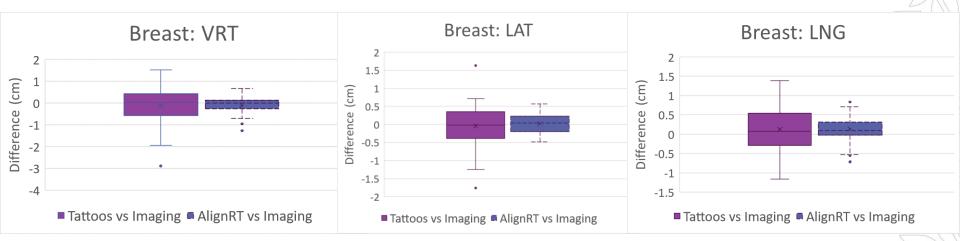
- Tattoo = Tattoo RTDs + Imaging shifts (VRT, LAT, LNG)
- AlignRT = AlignRT RTDs + Imaging shifts (VRT, LAT, LNG)
- 3D vector shifts / MAG

 $MAG = \sqrt{(\Delta VRT)^2 + (\Delta LAT)^2 + (\Delta LNG)^2}$

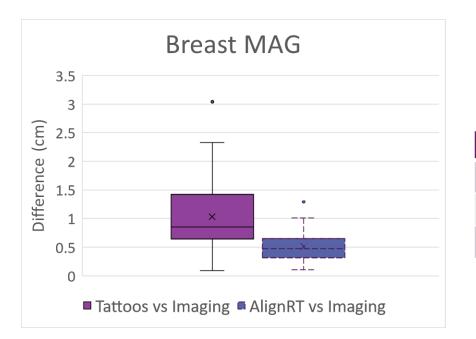

Results: Pelvis

LIFE CHANGING MEDICINE

	VRT	LAT	LNG
Tattoo	0.03 +/- 0.8 cm	0.2 +/- 0.6 cm	0.3 +/- 0.5 cm
AlignRT	-0.04 +/- 0.4 cm	0.1 +/- 0.4 cm	0.05 +/- 0.3 cm
P-value	>0.05	>0.05	<0.05


Results: Pelvis

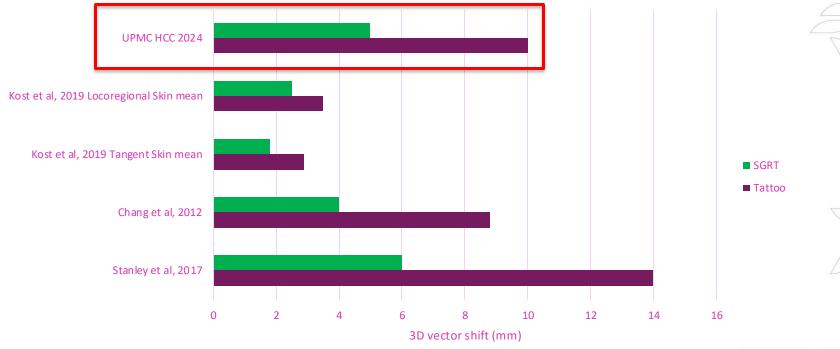
	MAG
Tattoo	1 +/- 0.4 cm
AlignRT	0.6 +/- 0.3 cm
P-value	<0.05


Results: Breast

	VRT	LAT	LNG
Tattoo	-0.2 +/- 0.9 cm	0.13 +/- 0.6 cm	-0.3 +/- 0.6 cm
AlignRT	-0.1 +/- 0.4 cm	0.15 +/- 0.3 cm	0.3 +/- 0.3 cm
P-value		>0.05	

UPPMC LIFE CHANGING MEDICINE

Results: Breast



	MAG
Tattoo	1 +/- 0.6 cm
AlignRT	0.5 +/- 0.3 cm
P-value	<0.05

Comparison with literature

3D vector displacement: Breast cases

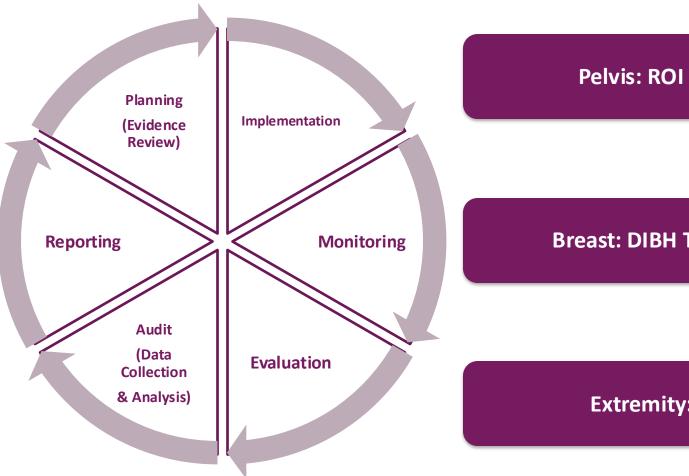
UPMC LIFE CHANGING MEDICINE

- Breast
- Staff feedback/comment on SGRT centric worflows
 - Patient setups requiring less manual handling
 - Time saving?
 - 5 min saving for DIBH treatments (breast only)

- Robustness of patient setups w SGRT for breast and pelvis cases => Tattooless!
- Less patients requiring correctional shifts
- Less patients requiring repeat imaging?
 - More than 1 cm translational shift?

	Tattoo	SGRT
Pelvis	12 (30%)	3 (8%)
Breast	14 (34%)	1 (2%)

CLINICAL WINS



SAFE DELIVERY OF TREATMENT

REDUCED RATES OF RE-SETUP & RE-IMAGING

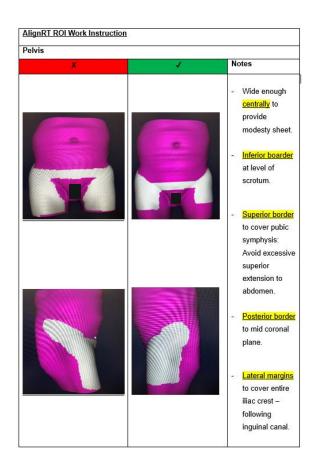
INCREASED TIME EFFICIENCY

Pelvis: ROI Optimisation

Breast: DIBH Troubleshooting

Extremity: Case Study

PELVIS: ROI Optimisation


Continuous Development of ROIs

Traffic light system in place to ensure ROI consistency amongst users

• Guide for training new users

• Ability to understand the system

- What we are trying to achieve
- How we can achieve it
- When to take action and troubleshoot an underperforming ROI

UPPNC LIFE CHANGING MEDICINE

Clinical Example: Additional Umbilicus Strip

Vertical	Longitudinal	Lateral
0.5 ± 0.1	0.9 ± 0.3	0.1 ± 0.1
Vertical	Longitudinal	Lateral
0.7 ± 0.2	0.2 ± 0.2	0.12 ± 0.05
	0.5 ± 0.1 Vertical	0.5 ± 0.1 0.9 ± 0.3 Vertical Longitudinal

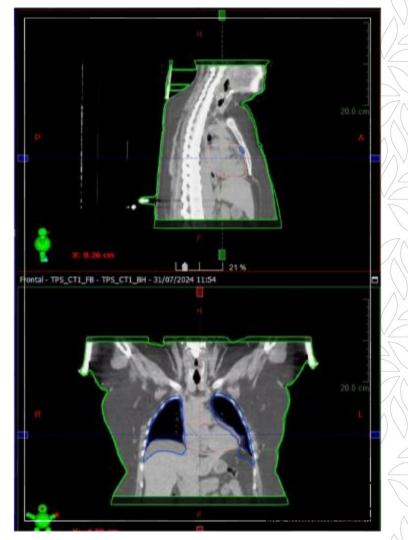
Learnings & Recommendations

Robust training programme for new users is instrumental to successfully implementing a tattooless workflow

Recognising underperforming ROIs & problem solving effectively to ensure consistently accurate setups

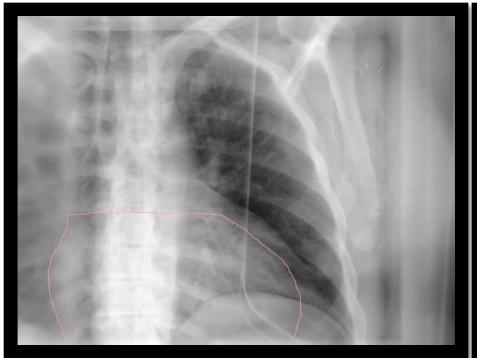
Ensure all users have a strong understanding of AlignRT Advance system and what the ROI/RTDs represent

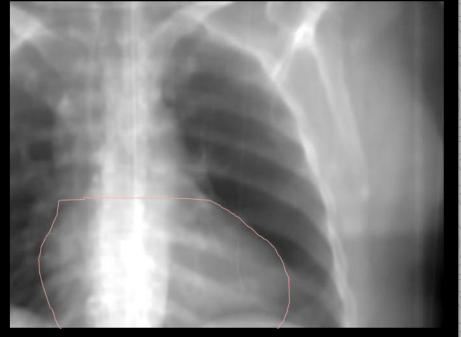
BREAST: DIBH TROUBLESHOOTING

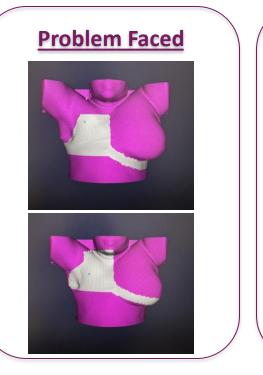

Contour vs Amplitude

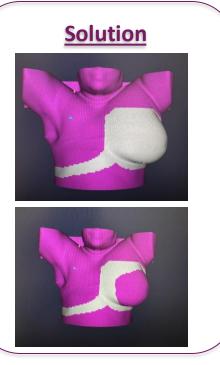
SimRT: Patch position on upper abdomen inferred ± 0.9cm amplitude

FB-BH image registration showed little contour change


Patient was suitable for DIBH with positive
 anatomical changes (heart & lungs)


BH plan: Optimal PTV coverage with increased heart sparing


DIBH when using the Real Time Coach


DIBH without using the Real Time Couch

Left or Right? Incorrect laterality introduces positional accuracy

Future Management

Implementation to be assessed on a case-by-case basis

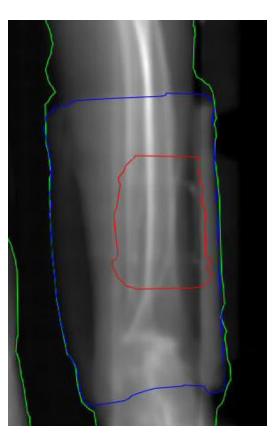
Starting amplitudes should be monitored to detect deviation in breath

Learnings & Recommendations

Consider contour direction change (Vertical/Longitudinal) when using RTC to achieve reproducible inhalation

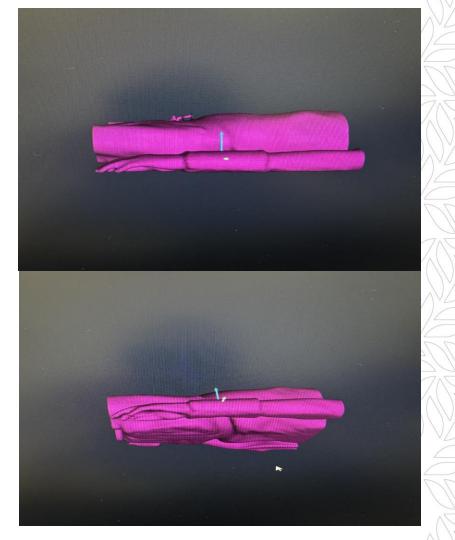
Consideration of contralateral ROIs to achieve & maintain DIBH amplitude when imaging DIBH chestwall patients

Ensure starting amplitudes (Vrt RTD) is recorded before beginning IGRT/treatment to ensure consistent breath in the absence of a baseline


EXTREMITY: CASE STUDY

Initial Setup

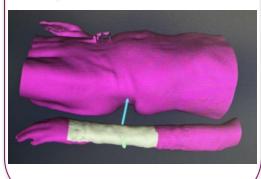
- Scanned HFS & arms by side (left arm akimbo)
- Use of VacBag to aid immobilisation
- Scanned with 1cm bolus placed



Rescan Position

- Scanned HFS & arms by side (left arm akimbo)
- VacBag not used
- Scanned with 1cm bolus placed
 (QIP)

QIP: Cropping Bolus from Body

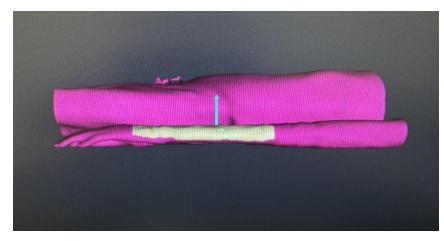

Problem Faced

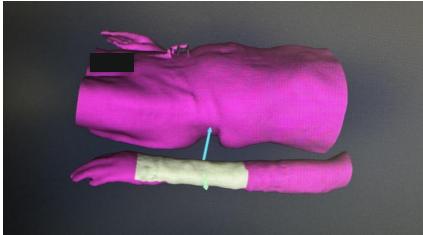
Inability to accurately reproduce bony setup when bolus

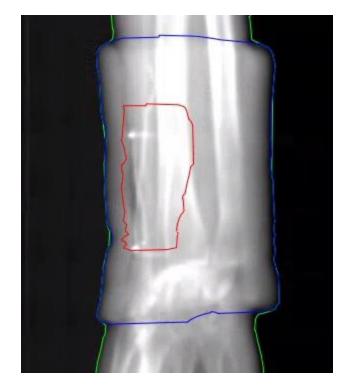
was scanned at CTsim

Solution

Create 'skin' contour to allow for correct bony setup prior to bolus placement and IGRT


Future Management


All patient scanned with bolus at CTsim should have 'skin' contour


Skin contour should only be used as a setup surface only

Once bolus is placed, switch to CTsim Body (ROI cropped from bolus)

LIFE CHANGING MEDICINE

UPPMC LIFE CHANGING MEDICINE

Learnings & Recommendations

Simplistic setups at CTsim for more reproducible & consistent setups using AlignRT Advance

Postural Video tool is paramount to ensure rotational accuracy in the absence of anterior alignment tattoos

Create a 'skin' setup surface to ensure delta shift values represent bony anatomy prior to bolus placement

References

- MyVisionRT Portal
- Al-Hallaq HA, Cerviño L, Gutierrez AN, et al. AAPM task group report 302: Surface-guided radiotherapy. *Med Phys*. 2022; 49: e82–e112. <u>https://doi.org/10.1002/mp.15532</u>
- Naidoo, W., & Leech, M. (2022). Feasibility of surface guided radiotherapy for patient positioning in breast radiotherapy versus conventional tattoo-based setups- a systematic review. *Technical innovations & patient support in radiation oncology, 22,* 39–49. https://doi.org/10.1016/j.tipsro.2022.03.001
- Kost, Susan et al. "Assessment of Setup Accuracy Using Anatomical Landmarks for Breast and Chest Wall Irradiation With Surface Guided Radiation Therapy." *Practical radiation oncology* vol. 9,4 (2019): 239-247. doi:10.1016/j.prro.2019.03.002
- Chang, Albert J et al. "Video surface image guidance for external beam partial breast irradiation." *Practical radiation oncology* vol. 2,2 (2012): 97-105. doi:10.1016/j.prro.2011.06.013
- Stanley, Dennis N et al. "Comparison of initial patient setup accuracy between surface imaging and three point localization: A retrospective analysis." *Journal of applied clinical medical physics* vol. 18,6 (2017): 58-61. doi:10.1002/acm2.12183

