



# The Implementation of InBore SGRT

Hannah Nayee Project Development Radiographer Royal Surrey NHS Foundation Trust





# The Royal Surrey Cancer Centre

#### 7 Linac department

#### 2 sites – Guildford & Redhill

Replaced 2 c-arm linacs in Redhill with 2 ring gantry linacs



Continuing our linac replacement over the next few years, more SGRT installations







### Machine replacement roadmap







# Why AlignRT InBore?

#### Research

- Presentation from 3 vendors
- Comparison of specifications and research evidence available

#### Considerations

- Ease of use
- Communication with machine
- Quality of training
- Future proofing

#### Site specific

- Small bunkers
- VisionRT offers only clinically available in bore solution









## **Staff training**





### **Staff feedback**

#### Ease of use

Simple set ups Time efficiency

#### Accuracy

Real – time monitoring

#### Less physical contact

Manual handling Infection control

### Troubleshooting

Optimising tools available Reflections due to clothing



NHS





Challenges





### Ease of use

HyperSight Imaging

**Delta-Couch Shift** 

**Increase capacity** 

**Fewer delays** 











## Time in motion audit

### Time in Minutes



- Treatment type– IMRT vs RapidArc
- Pelvis reduction of 4-5 mins
- DIBH Breast reduction of 4 mins
- Chest reduction of 5 mins





### **Introduction of DIBH Breast**

- Previously used RPM
- SimRT confidence in CT Sim 2 scan protocol
- Introduced slowly into workflow
- Planning team needed time to adjust the planning for Halcyons
- Vision RT on site for demonstrations of workflow
- Cascaded training to rest of team
- Introduced 1-2 more DIBH breast patients a week to continue training and get planning team training complete too.



### **DIBH** Workflow



| Free breathing set up | Set up in free breathing to free breathing CT body                                          |
|-----------------------|---------------------------------------------------------------------------------------------|
| DIBH set up           | Switch to DIBH ref body and patient breathes in                                             |
| Load                  | Load the patient in to the bore                                                             |
| InBore position       | Check the patients FB and DIBH position against the RTD                                     |
| Take CBCT in<br>DIBH  | Patient to be in DIBH for CBCT and when applying moves – take a 'this session only' capture |
| Treatment             | Deliver treatment in DIBH with real time monitoring                                         |





### **DIBH Workflow video**



••••





### Set – Up Accuracy Audit

Breast patients 0.6 Tattoo set up on Truebeam VS SGRT on Halcyon 0.5 Patients set up to tattoo - Imaging isomoves ranged from 0.5-1.5cm 0.3 Patients were up to 2.5cm distance from their reference marks Average imaging isomoves for all SGRT were 0 under 0.4cm Breast set up value







## Lung SABR

- MDT Team
- No departmental planning experience on Halcyon
- Logistics of staffing and training
- No 4DCBCT on Halcyon/ETHOS
- Transportation of equipment
- Halcyon automation
- SGRT set up with multiple isocenter
- Stable ROI
- Audit for SGRT data





### Audit data

- Real-time deltas (RTD) values noted at each stage of imaging and treatment
- Compared the imaging values to the RTD offline
- Reviewed patient movement during treatment and imaging
- 1<sup>st</sup> patient average 0.25cm difference in RTD vs imaging values
- 2<sup>nd</sup> patient average 0.2cm difference between RTD vs imaging values
- 3<sup>rd</sup> patient currently on treatment, 3 more patients booked more data to follow



### **Open-faced mask case study**







Before cutting

- Patient refused radiotherapy
- Prescribed medication
- Music and verbal distraction
- Mask cut to duplicate open face style mask





After cutting





### **Open-faced mask case study**



A new SGRT body contour was created due to mask on CT Sim body contour

#### CT Sim body contour



SGRT body contour







# Our SGRT journey so far

#### **Current cases**

- All pelvis patients
- Chest
- Breast/SCF/DIBH/IMC +/- bolus (multiisocenter)
- Palliative (all sites)
- Haematology H&N
- Abdomens
- PA nodes
- Radical brains
- Limbs
- Lung SABR

#### **Future cases**

- Adaptive bladder treatment
- Tattooless radiotherapy
- Nodal SABR
- Open-faced masks







### REFERENCES

<u>HyperSight | Varian</u>

<u>AlignRT InBore | Dedicated SGRT Solution for bore based linacs (visionrt.com)</u>





# Questions

# THANKS

Hannah.nayee@nhs.net



CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u> and infographics & images by <u>Freepik</u>

Please keep this slide for attribution

