REACHING NEW HEIGHTS WITH SGRT

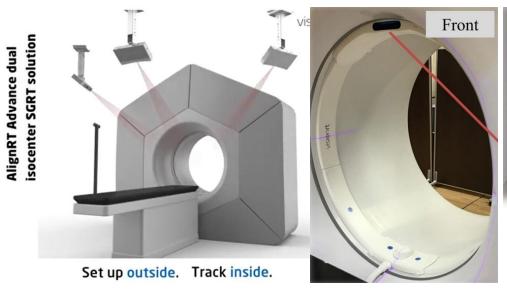
The Role of SGRT for Online Adaptive SBRT Treatments Using AlignRT InBore on Ethos Linacs

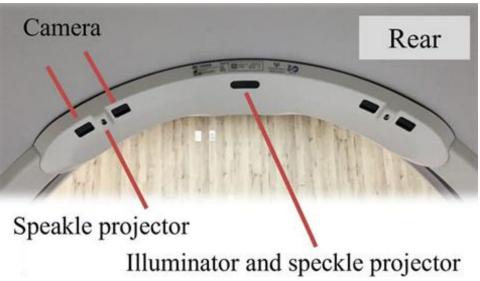
George (Guang) Li, PhD, DABR Memorial Sloan Kettering Cancer Center

Surface-guided Radiotherapy (SGRT) for Online Adaptive SBRT Treatments Using AlignRT InBore on Ethos Linac

George Li, PhD, DABR

Department of Medical Physics


Memorial Sloan Kettering Cancer Center



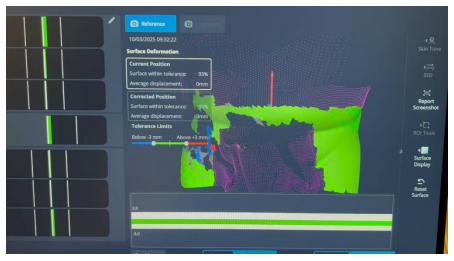
Background of AlignRT inBore System

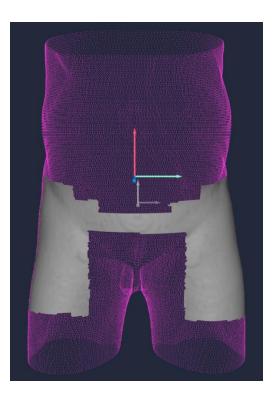
- The external camera system to the simulation isocenter (simISO)
 - Three camera pods to provide 6DOF shifts, similar to the AlignRT Advance system
- The internal camera system to the treatment isocenter (txtISO)
 - Two camera pods on the ring inside the bore, having a smaller field of view (FOV)
 - Useful for monitoring body motion during online planning using RTD (Real-Time Delta)
 - A gentle daily collision check is required to pass inBore daily QA.

MSK Online Adaptive SBRT with SGRT

- Online adaptive SBRT for advanced prostate patients (with nodes)
 - SBRT Rx for EBRT-only treatments: 500/800cGy x5
 - SBRT Rx for post-brachy treatments: 500cGy x5
- Online adaptive re-planning on Ethos TPS system
 - Apply SGRT using DICOM reference to reproduce simCT external position
 - Using extended iCBCT-acuros for online planning and treatment
 - Patient motion monitoring during online planning using RTD (Real-Time Delta)
- SBRT setup with ±3mm PTV safety margin
 - Customized body mold without anterior mask fixation
 - Different daily bladder filling, rectum gas, and bowel positions
- SGRT motion monitoring with 3 intra-fractional CBCTs during SBRT
 - Intra-fractional body motion monitoring using RTD
 - Increasing bladder filling (full bladder) during ART-SBRT treatment using 3 CBCTs

Workflow for Prostate SGRT-ART-SBRT




- Initial Adaptive SBRT planning and plan checking
 - Planning (PTV margin: ±3mm) based on the simulation CT image using Ethos TPS
- SBRT setup using simulation CT DICOM external reference
 - Using 6DOF to reproduce the simulation position on the Ethos 3DOF couch
- Online Adaptive Re-planning on Ethos System
 - Using extended iCBCT-acuros for online adaptive planning
 - Adapt to daily prostate volume, bladder filling, rectum gas, and bowel positions
 - Patient motion monitoring during online planning using RTD (Real-Time Delta)
- On-treatment internal-external motion monitoring
 - Intra-fractional body motion monitoring using RTD and possible manual action
 - Intra-fractional CBCT (x3) monitoring internal organ motions
- Post-treatment patient-specific QA (PSQA)
 - PSQA for every fraction is conducted for any new clinical procedure

SGRT ROI for Setup and Monitoring

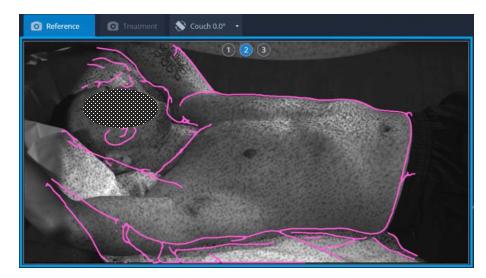
- ROI (region of interest) definition for pelvis patients
 - Cover the anterior and lateral thighs, avoid the private area, which will be covered by a towel and the belly area, which moves with respiration
 - Use the simulation CT body contour as the reference surface for SGRT setup
 - Minimize ROI deformation
 by adjusting the patient
 using Deformation View
 as a real-time guidance

- 6DOF SGRT setup on the 3DOF Ethos couch
 - Adjust the patient's body to correct rotations (±1.5°) first, then apply couch shifts (near zero)
 - On treatment, manual action will be taken if the patient moves out of the tolerance (±3mm).

SGRT Patient Setup in 6DOF

- SGRT guidance for adaptive patient setup using simCT DICOM reference
 - Using DICOM external body surface as the reference to reproduce the simCT body position
 - First, use the Postural Video to guide the initial SGRT setup
 - Second, correct body rotation shift first, and then apply couch shifts
 - Third, use the Deformation View to correct local deformation within the ROI

Green (±3mm), Red (>3mm), and Blue (<3mm)



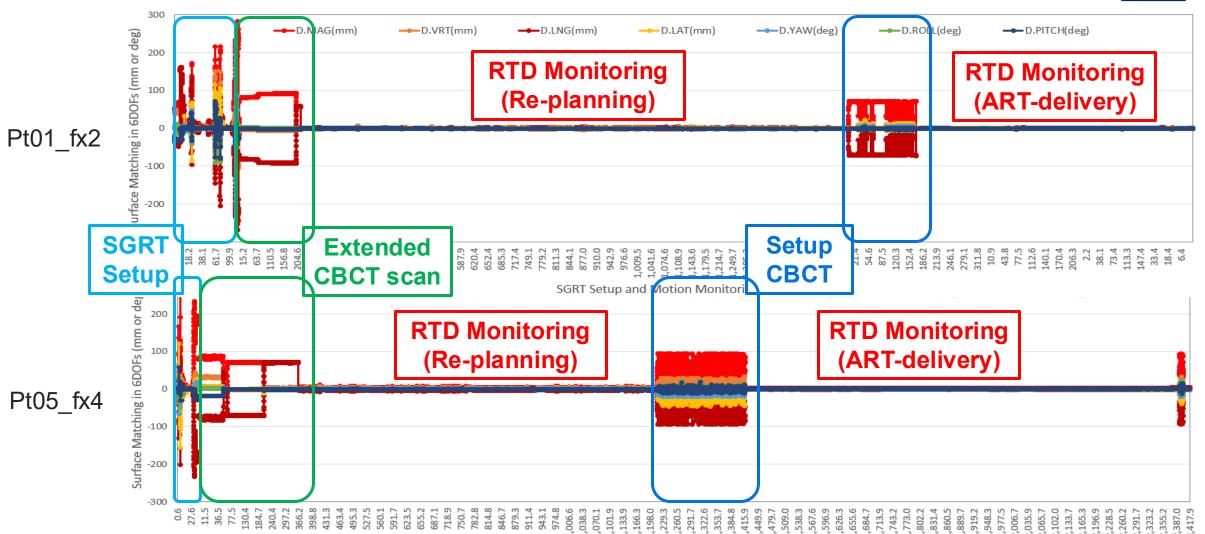
SGRT Workflow to Handle Deformation 1

- (1) Apply RTD in Postural Video mode at the beginning
 - Using body outlines (3 camera views) to adjust the patient and move the couch to the simISO.
 - Adjust torso alignment first, as it is heavier to move, then the extremities (correct deformation)

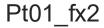
- (2) Minimize the 6DOF shifts, achieving near-zero-shift setup
 - Do not stop at the action thresholds (±3mm and ±1.5°)
 - The key is to minimize the shifts (near-zero) before further correcting ROI deformation

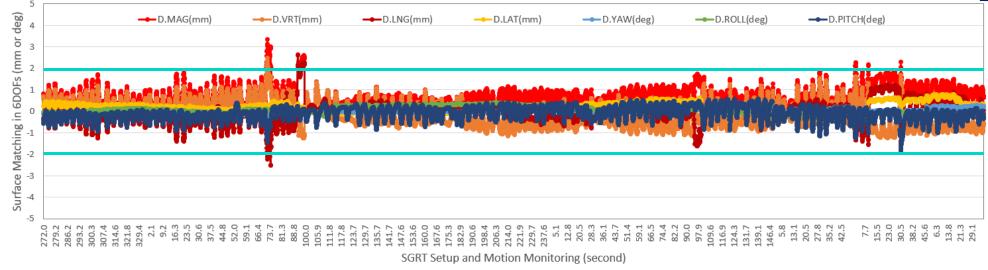
SGRT Workflow to Handle Deformation 2

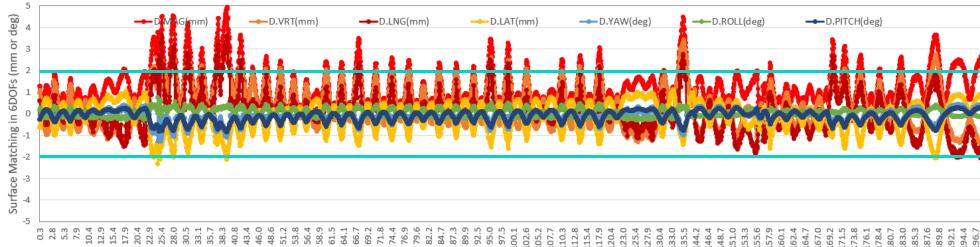
- (3) Change to Deformation View (Red >3mm, Green ±3mm, Blue <3mm)
 - Once near-zero 6DOF shifts are achieved, most ROI should be green.
 - Look for systematic color bias within the ROI.
 - Current Position
 (¾ ROI in Green)
 - After couch shifts
 (>¾ ROI in Green)



 (4) Load the patient into the bore, and perform CBCT @txtISO for final setup


SGRT Monitoring during Re-planning




Body Surface Motion during Treatment

Pt05_fx4

SGRT Setup and Motion Monitoring (second)

Organ Motion by Intra-Fractional CBCTs

- Bladder filling during treatment (2 cups of water before treatment)
 - The fullness of the bladder was checked with ultrasound before SGRT setup
 - During treatment, the bladder keeps enlarging toward the superior, anterior, and lateral directions.
 - The interface with the prostate remains within ~5mm uncertainty, as shown below.

Movements of Prostate and Nodes

- Al-based automatic segmentation of the prostate and nodes (CTVs)
 - MIM was used to perform the contouring and its statistical analysis among 4 CBCTs.
 - Only 3 out of 12 adaptive patients have been analyzed: more data will be collected and processed.
- Mean-Distance-to-Agreement (MDA) of CTVs among 4 intra-fx CBCTs
 - The prostate and nodes move about 1.9±0.5mm and 1.0±0.2mm, respectively.
- DICE similarity index of CTVs among 4 intra-fx CBCTs
 - Both the prostate (Dice=0.83) and nodes (Dice=0.91) maintain their shapes during treatment.

Patient	MDA				DICE			
	CTV_Prostate		CTV_Nodes		CTV_Prostate		CTV_Nodes	
	AVG	STD	AVG	STD	AVG	STD	AVG	STD
1	1.65	0.41	1.07	0.09	0.86	0.03	0.91	0.01
2	1.58	0.20	1.07	0.41	0.85	0.01	0.91	0.03
3	2.51	0.95	0.99	0.23	0.76	80.0	0.90	0.02
AVG	1.91	0.52	1.04	0.24	0.83	0.04	0.91	0.02

Conclusion

- SGRT is necessary for online adaptive SBRT of prostate cancer
 - Ensure PTV safety margin (±3mm) is secured under RTD surveillance
 - Bladder filling has minimal impact on prostate and nodal positions
- SGRT workflow is useful for reproducible setup and secured position
 - Correct body rotations using 6DOF SGRT on a 3DOF couch
 - Patient motion monitoring is necessary during online planning and treatment
- Further investigation is ongoing using clinical patient data
 - Only three out of 12 SGRT-ART-SBRT patients are analyzed
 - Intra-fractional CBCT will stop after the study conclusion is reached

Any Questions?

Memorial Sloan Kettering Cancer Center

Thank You!

REACHING NEW HEIGHTS WITH SGRT

To take part in our event polls, scan here:

... or visit sli.do and enter code SGRTUSA25

REACHING NEW HEIGHTS WITH SGRT

BREAK

