REACHING NEW HEIGHTS WITH SGRT

Advancing Motion Control: An Evaluation of VRT In-Bore Guided Breath-Hold Using a CBCT-Guided Adaptive System

Xinran Zhong, PhD University of Texas Southwestern

Advancing Motion Control: An Evaluation of AlignRT In-Bore Guided Breath-Hold Using a CBCT-Guided Adaptive System

Xinran Zhong, PhD, DABR

June 5th, 2025 SGRT Annual Meeting 2025

> UT Southwestern Medical Center

Disclosure

No conflicts of interest

Outline

- CBCT-Guided Online Adaptive Treatment: Managing Inter-Fraction Motion
- Breath-Hold in CBCT-Based oART? Managing Intra-Fraction Motion
- Surface Guidance Meets Adaptive Workflow: AlignRT InBore
- Clinical Workflow Implementation: From Simulation to Treatment
- Clinical Evaluation
 - Intra-fraction Motion Analysis
 - Time Cost Evaluation
- What We Learned

CBCT-Guided Online Adaptive Treatment: Managing Inter-Fraction Motion

- Utilizes daily CBCT for contouring, planning and dose calculation
- Addresses inter-fraction motion
 - Daily Target Contour: better target coverage
 - Reduced Margin and Daily OAR contour: lower OAR dose
- Varian Ethos with HyperSight Imaging
 - Ring based gantry
 - 6s image acquisition time with improved image quality

Breath-Hold in CBCT-Based oART? Managing Intra-Fraction Motion

- Improved image quality for contouring with reduced motion artifact
 - Better target and OAR visualization
 - Improved AI-based autocontouring for organs at risk (OARs)
- Increasing distance between target and OARs
- Potential for margin reduction

[1] Zhong, X., Rahman, M., et. al. Advances in Radiation Oncology, 2025

Surface Guidance Meets Adaptive Workflow: AlignRT InBore

- AlignRT InBore enables real-time surface tracking during treatment delivery, compatible with the Ethos ring gantry system
 - Setup isocenter: 3D ceiling-mounted cameras
 - Treatment isocenter: InBore camera ring system

SGRT 2025 · Denver, CO

Surface Guidance Meets Adaptive Workflow: AlignRT InBore

	Setup Cameras		InBore Cameras	
	With ACO	Without ACO	With ACO	Without ACO
Accuracy Near Isocenter	≤ 0.2 mm ≤ 0.1 deg	≤ 0.5 mm ≤ 0.3 deg	≤ 0.4 mm ≤ 0.1 deg	≤ 0.5 mm ≤ 0.3 deg
Accuracy Periphery	≤ 0.5 mm ≤ 0.2 deg	≤ 1.0 mm ≤ 0.5 deg	≤ 0.5 mm ≤ 0.2 deg	≤ 1.0 mm ≤ 0.5 deg
FOV	650 x 1000 x 350 mm ³		660 x 480 x 325 mm ³	

ACO = Advanced Camera Optimization

This process compensates for the curved lens geometry of the cameras

Surface Guidance Meets Adaptive Workflow: AlignRT InBore

Free breathing setup

- Consistent setup across machines for adapton-demand treatments
- Markless setup for breast treatments
- Sim-omitted treatments
- Remaking immobilization devices
- Breath-hold
 - Breast: mostly whole breast (fast-forward)¹
 - Lymphoma²: abdomen

[1] Brunt AM, et. al. The Lancet. 2020.[2] Kumar K, et. al. International Journal of Radiation Oncology, Biology, Physics. 2025

Questions Before the Clinical Implementation

What is the residual intra-fraction motion of target positioning when using AlignRT InBore-guided breath-hold (BH)?

What is the cost of time to introduce surface-guided BH to the adaptive workflow?

How does a longer treatment workflow affect the consistency across breath-holds (intra-fraction motion)?

UT Southwestern Medical Center

Clinical Workflow Implementation: From Simulation to Treatment

- Depth of tumor
 - Breast: targets are closer to the surface
 - Abdomen: targets are typically deeper and further from the surface
- Simulation Evaluation

		*	
Breast	Abdomen	Treatment:	
BH coachin BH consistency check rega	Motion Monitor and Verifi (AlignRT Inbore)		
1FB and 1 BH CT scan ✓ FB and BH surface separation	1FB and 3 BH CT scans ✓ BH Surface consistency		
 ✓ FB and BH spine shift 	 ✓ BH Target consistency 	Data Analysis:	

Clinical Workflow Implementation: From Simulation to Treatment

VRT Inbore Setup

- Free-breathing setup verified at setup isocenter
- BH consistency verified at treatment isocenter
- Recapture surface for new consistent BH before CBCT
- <u>3mm motion tolerance for SGRT BH (5.2mm magnitude)</u>

Clinical Workflow Implementation: Setup Demonstration

SGRT 2025 · Denver, CO

Clinical Evaluation: Motion Analysis

Clinical Evaluation: Patient Cohort

- Breast Fast Forward Patient
 - FB: 10 patients (50 fractions)
 - BH: 10 patients (49 fractions)
 - Whole breast treatment
 - Prescription dose: 26 Gy in 5 fractions

- Lymphoma Patients
 - FB: 20 patients (53 fractions)
 - BH: 10 patients (65 fractions)
 - Treatment sites and Prescription dose vary

Motion Analysis: breath hold consistency for breast patients

UTSouthwestern Medical Center

SGRT 2025 · Denver, CO

Time Cost Evaluation: Breast Patients

* Setup time is calculated as the time from session open at the console to 1st CBCT acquisition

Motion Analysis: breath hold consistency for lymphoma patients

3mm motion tolerance for SGRT (5.2mm mag) 5-7mm PTV margin

Time from the latest surface capture to the CBCT

UT Southwestern Medical Center

SGRT 2025 · Denver, CO

Time Cost Evaluation: Lymphoma Patients

* Beam Delivery time is calculated as the time from adapted plan acceptance to session closure

What we learned

- Patient education and motion evaluation during simulation are essential for successful breath-hold motion management workflow.
- AlignRT in-bore guided breath-hold (BH) provides reliable intra-fraction motion control with appropriate margins for whole breast and abdominal lymphoma patients.
- Although breath-hold treatment may slightly increase setup time and beam delivery times, the additional time required for breath-hold is minimal compared to the overall session duration.
- If a significant time has passed since the last surface capture, it may be beneficial to verify breath-hold consistency using CBCT in the middle of the beam delivery.

Acknowledgement

Physicist Team

- o Zohaib Iqbal
- David Parsons
- o Siqiu Wang
- Chenyang Shen
- Andrew Godley
- Mu-Han Lin
- EROC TPOD Team
- Ethos Adaptive Team

Physician Team

- Asal Rahimi
- Kiran Kumar
- Narine Wandrey
- Mona Arbab
- o Dillon Li
- o Prasanna Alluri
- Malgorzata Kozak

- Therapist Team
 - Trung Truong
 - Francis Holgado
 - o Chinasa Okoro
 - Jeric Francisco
 - Hannah Keen
 - Wendy Garcia-Ramirez
 - o Jennifer Cleaton
 - o Denise Salazar

Thank you!

Questions?

UTSouthwestern Medical Center

Which SGRT system is compatible with Ethos machine?

- A. SimRT
- B. MapRT
- C. AlignRT
- D. AlignRT InBore

Which SGRT system is compatible with Ethos machine?

- A. SimRT
- B. MapRT
- C. AlignRT
- **D.** AlignRT InBore

Quiz 2

Which of the following can surface-guided breath-hold (SGRT-BH) not address?

- A. Target Growth
- B. Breath-Hold Inconsistency
- C. Intra-Fraction Motion
- D. Motion Artifact

Quiz 2

Which of the following can surface-guided breath-hold (SGRT-BH) not address?

- A. Target Growth
- B. Breath-Hold Inconsistency
- C. Intra-Fraction Motion
- D. Motion Artifact

Why can surface-guided breath-hold (SGRT-BH) improve image quality for CBCT?

- A. Improved Signal-to-Noise Ratio (SNR)
- **B.** Enhanced Resolution
- C. Reduced Motion Artifact
- D. Increased Contrast

Why can surface-guided breath-hold (SGRT-BH) improve image quality for CBCT?

- A. Improved Signal-to-Noise Ratio (SNR)
- **B.** Enhanced Resolution
- C. Reduced Motion Artifact
- D. Increased Contrast

- Which of the following is not necessary to evaluate during the breath-hold simulation for abdominal lymphoma patients?
 - A. Breath-hold (BH) surface consistency
 - B. Breath-hold (BH) target location consistency
 - C. Surface separation between free-breathing (FB) and breath-hold (BH)
 - D. Breath-hold (BH) capability of the patient

- Which of the following is not necessary to evaluate during the breath-hold simulation for abdominal lymphoma patients?
 - A. Breath-hold (BH) surface consistency
 - B. Breath-hold (BH) target location consistency
 - C. Surface separation between free-breathing (FB) and breath-hold (BH)
 - D. Breath-hold (BH) capability of the patient

Quiz 5

- What imaging modality serves as the ground truth for assessing intra-fraction motion in our current study?
 - A. kV Images
 - B. Fluoroscopy Images
 - C. CBCT Images
 - D. MRI Images

Quiz 5

- What imaging modality serves as the ground truth for assessing intra-fraction motion in our current study?
 - A. kV Images
 - B. Fluoroscopy Images
 - C. CBCT Images
 - D. MRI Images

REACHING NEW HEIGHTS WITH SGRT

To take part in our event polls, scan here:

... or visit sli.do and enter code SGRTUSA25