REACHING NEW HEIGHTS WITH SGRT

Improving Plan Quality & Safety Using Surface Guided Planning and Dose Visualization

Adi Robinson, PhD, DABR AdventHealth Celebration

Advent Health Improving Plan Quality & Safety Using Surface Guided Planning and Dose Visualization

Adi Robinson Ph.D., DABR AdventHealth Celebration

Disclosures

- AdventHealth Celebration has a COE agreement with VisionRT
- AdventHealth Parker has a PSA agreement with VisionRT

AdventHealth Hospitals

Surface Guided Planning

Surface guided Planning with Clearance Mapping

- From day 1, ensure safe plan delivery and reduce physical collision checks
- Introduce plan optimization based on the clearance map
 - Coplanar planning
 - Non-coplanar planning

The Simulation Room

The Clearance Map

Surface Guided Planning Workflow

- In the CT sim room
 - Capture surface prior to CT sim
 - Check for collisions
 - Adjust patient position or immobilization device accordingly.
- Treatment Planning
 - Use clearance map to optimize the plan
- Treatment
 - Plan can be safely delivered

Case Study: Rt Breast

 69 year old female with malignant neoplasm of the upper-inner quadrant of the right female breast

Rt Breast Clearance Map

Case Study: Lt APBI

- 75-year-old female with malignant neoplasm of the central portion of the left breast
- VMAT DIBH plan, 267cGy x 15 fractions

Standard Approach to APBI

- 2 Field VMAT DIBH
 - CCW G155-G330
 - CW G330-G155

Structure	Constraint	Lt APBI CI
Lumpectomy_Lt	95% ≥ 95%	99.981%
Lumpectomy_Lt	V100% ≤ 93%	95%
Lumpectomy_Lt	Max ≤ 107%	105.619%
Heart	V1600cGy ≤ 5%	0%
Heart	Mean ≤ 200cGy	112cGy
Lung_L	V1750cGy ≤ 15%	0%
Lung_L	V880cGy ≤ 10%	0%
Lung_L	V144cGy ≤ 50%	11.972%
Breast_R	V144cGy ≤ 10%	0%
Lung_R	V440cGy ≤ 10%	0%

Non-Coplanar Surface Guided Planning

- 2 Field VMAT DIBH with Non-Coplanar Fields
 - CCW G155-G330, **T345**
 - CW G330-G155, **T15**

Structure	Constraint	Lt APBI CP	Lt APBI NCP	Difference
Lumpectomy_Lt	95% ≥ 95%	99.981%	99.952%	0.029
Lumpectomy_Lt	V100% ≤ 93%	95%	95%	0
Lumpectomy_Lt	Max ≤ 107%	105.619%	104.427%	1.192
Heart	V1600cGy ≤ 5%	0%	0%	0
Heart	Mean ≤ 200cGy	112cGy	110cGy	2
Lung_L	V1750cGy ≤ 15%	0%	0%	0
Lung_L	V880cGy ≤ 10%	0%	0%	0
Lung_L	V144cGy ≤ 50%	11.972%	2.66%	9.312
Breast_R	V144cGy ≤ 10%	0%	0%	0
Lung_R	V440cGy ≤ 10%	0%	0%	0

Lt APBI Non-coplanar Clearance Map

Case Study: Lt Deltoid

- 41-year-old female with secondary malignant neoplasm of the left deltoid muscle
- Previous radiation to the left chest wall and lymph nodes

Surface Guided Planning for Lt Deltoid

- Coplanar plan
 - LAO G35
 - LPO G120
- Noncoplanar Plan
 - LAO G35, **T30**
 - LPO G120, **T325**

Structure	Constraint	NCP	СР	Diff
Lt Deltoid	Max ≤ 110%	109.71%	111.56%	-1.85%
Lt Deltoid	V95% ≥ 95%	99.56%	99.31%	0.25%
Breast_L	V300cGy ≤ 10%	0%	0.02%	-0.02%
Breast_L	Max ≤ 300cGy	49.6cGy	655.2cGy	-605.60 cGy
Heart	V2500cGy ≤ 10%	0%	0%	0.00%
Heart	Mean ≤ 300cGy	4cGy	10cGy	-6.00
Lung_L	V2000cGy ≤ 35%	0%	0%	0.00%
Breast_R	V300cGy ≤ 10%	0%	0%	0.00%
Breast_R	Max ≤ 300cGy	1.5cGy	1.8cGy	-0.30 cGy
Lung_R	V500cGy ≤ 10%	0%	0%	0.00%

Lt Deltoid Clearance Map

TPS Integration - Raystation

TPR Integration

- Raystation full integration with clearance check and map
- Eclipse integration via API. Mike Tallhamer will do a show and tell.

Surface Guided Treatment with Dose Visualization

SGRT with Dose Visualization

- Simultaneous real time visualization of dose delivery and patient positioning.
- Can help prevent treatment errors in real time and improve clinical outcome

Cherenkov Radiation

- Cherenkov radiation is emitted when a charged particle moves through a medium faster than the phase velocity of light in that medium.
- First observed in 1934 by Pavel Cherenkov when he saw a bluish light around a radioactive source placed in water. Tamm and Frank developed the theory in 1937 and all 3 share the 1958 Nobel Prize.

Cherenkov Imaging

- Cherenkov light can be seen on the patient's skin surface during treatment with special light sensitive cameras.
- The Cherenkov signal is a result of the interaction of the entrance and exit beam during treatment.
- This allows us to visualize the radiation treatment directly on the patient's skin

Case Study: Bolus Misplacement

- 62-year-old female, whole right breast treatment.
- 13 with bolus, 12 fractions without.
- On fraction 8 her bolus was misplaced
- Corrected right away and closely monitored after.

Case Study: Lt Breast with Contralateral Breast Dose

- 51 -year-old female, whole left breast treatment.
- Treated with DIBH
- On the 5th fraction, dose to the right breast was visualized
- AlignRT tolerances and positioning were adjusted
- On fraction 6, no dose to the right breast was seen,

Case Study: Dose to the Chin

- 61-year-old female with malignant neoplasm of the left breast.
- During the treatment of her SCV lymph node, dose to the chin was visualized.
- Positioning of the patient was corrected for the next fraction

Prostate – Hand in Beam

- 75 year old male with malignant neoplasm of the prostate
- 4 field VMAT plan
- On fraction 8, his hands moved into the beam path during the first arc.

Case Study: Rt Knee

- 21 year old female with Villonodular Synovitis of the right knee (benign)
- 4 field 3D conformal plan

Case Study: SRS Treatment

- 53 year old female with malignant neoplasm of brain.
- 9 Gy x 3 to 3 lesions.
- 4 VMAT arcs in a non coplanar treatment.

Thymoma

- 50 year old make with malignant neoplasm of the thymus
- 2 field VMAT plan

Cherenkov Signal Linearity

Cherenkov Signal Constancy

- Singal constancy check daily for 3 months.
- All photon energies (except 6FFF)
- Variation from mean does not exceed +/-6%

Cherenkov Signal Geometric Constancy

- Field size check for 3 months
- 6MV
- All measurements under 2% following TG-142.

Cherenkov Signal vs Linac Output

- Linac output was measured using ion chamber
- Cherenkov signal was measured at the same time
- Similarity was observed between the two

Conclusion

- MapRT provides a clearance map that eliminates the need for collision checks and dry runs while assisting in improving the quality of the treatment plan
- DoseRT provides dose visualization in real time. assists in improving the quality and safety of treatment delivery.

Thank you! Questions?

Email: Adi.Robinson@adventhealth.com

REACHING NEW HEIGHTS WITH SGRT

To take part in our event polls, scan here:

... or visit sli.do and enter code SGRTUSA25

REACHING NEW HEIGHTS WITH SGRT

BREAK