
IN-BORE SGRT WITH HALCYON ELITE

INITIAL CLINICAL EXPERIENCE FROM A TERTIARY CANCER CENTER

Dr Mansi Munshi Girme

Senior Radiation Oncologist

Ruby Hall Clinic, Pune

RUBY HALL CLINIC, PUNE

- 800 bedded multispecialty hospital
- Dedicated Cancer Center
- Every month

Surgery- 90-100

Chemo- 500-600

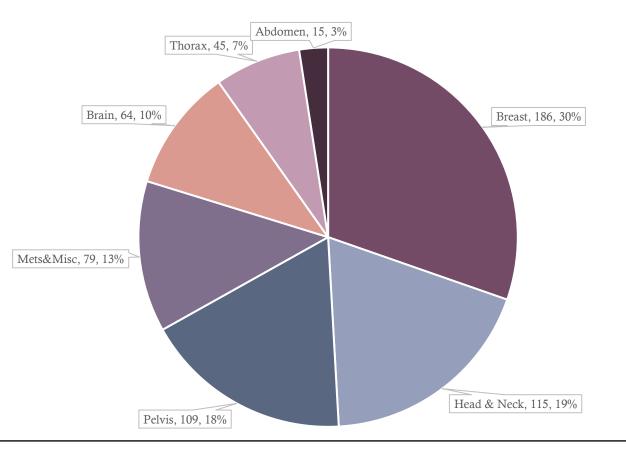
Radiation – 150-200

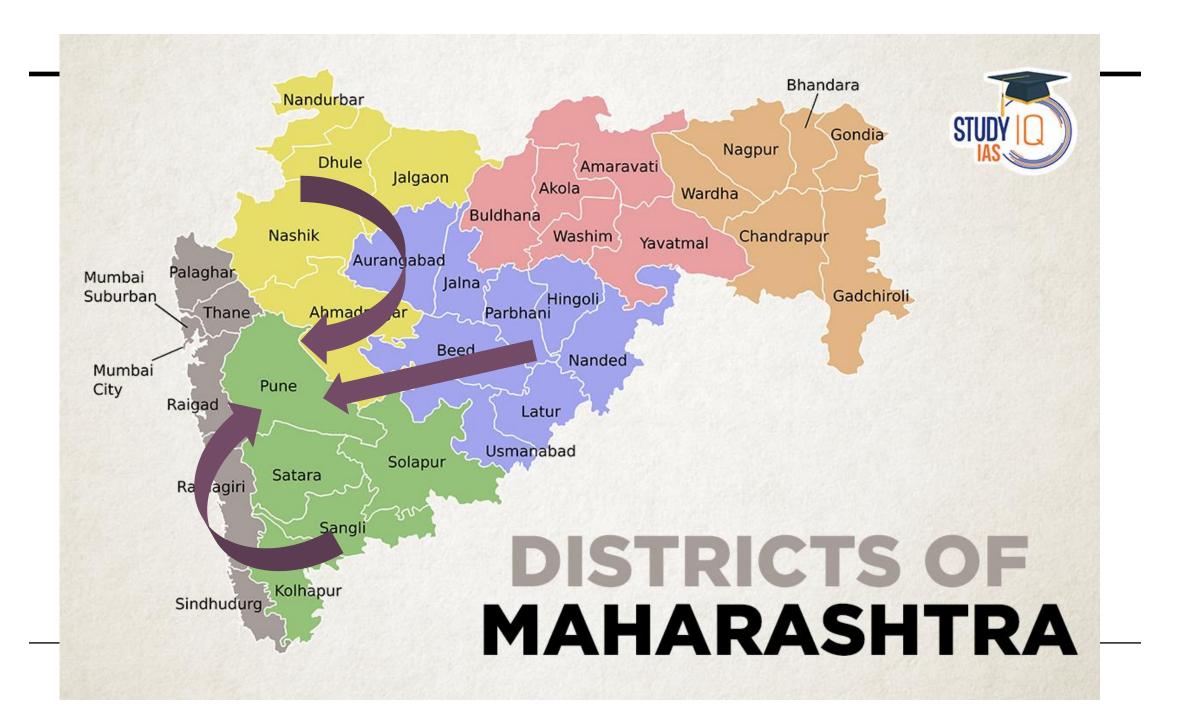
PET CT - 1200

HISTORY OF RADIATION DEPARTMENT

	Telecot Theratr •First radiother facility in	con Jr	First MVCB IGRT in Asia (other Japan) Oncor Impres Plus	First than	First F beam SRS/S on On ST	SRT	Trueb STx w RPM Cones	rith /	Cyber S7	knife		
		early	7 90's	20	05	20	17	20	20	2(024	
1	197	76	20	05	20	11	20	19	20	23		
		-> Ph	In early 90's -> Phoenix telecobalt		Microselectr on HDR Brachy		Microselectr on V3 HDR		Halcyon Elite		Align RT by Vision RT	
G							2					

CURRENT EQUIPMENT





SCOPE OF WORK

• Nearly 25,000 patients treated since 27.1.2005 on Linac

NEED FOR SGRT

- 1. High throughput
- 2. Significant breast radiotherapy with a huge load on Truebeam STx
- 3. Needed a dependable back up on Halcyon (no field lamp)
- 4. DIBH on Halcyon needed
- 5. 3D couch on Halcyon.
- 6. Need for tattoo-less system
- 7. Arm and chin verification for breast
- 8. Intrafraction motion management
- 9. Confident craniospinal irradiation
- 10. Better setups for extremities
- 11. More comfort for palliative patients

TECHNICAL CONSIDERATIONS WHILE MAKING THE CHOICE FOR SGRT

- In bore cameras for visualization of tricky areas
- Accurate calculations especially hidden areas
- Postural view for ease of setup- guidelines
- Versatile software
- Quick system
- Easily integrated into workflow
- Quick and easy QA
- No additional radiation dose

DRAWBACK

- Inability to Auto beam-hold with Halcyon
- External contour does not always correlate with internal anatomy
- Slow learning curve
- Open mask change in work practice
- Sensitive to ROI

Radiotherapy and Oncology 173 (2022) 188-196

Contents lists available at ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

Guidelines

ESTRO-ACROP guideline on surface guided radiation therapy

Radiotherap

P. Freislederer ^{a,1,*}, V. Batista ^{b,c}, M. Öllers ^d, M. Buschmann ^e, E. Steiner ^f, M. Kügele ^g, F. Fracchiolla ^h, S. Corradini ^a, M. de Smet ⁱ, F. Moura ^j, S. Perryck ^k, F. Dionisi ¹, D. Nguyen ^m, C. Bert ⁿ, J. Lehmann ^{o,p,q}

^a Department of Radiation Oncology, LMU University Hospital, Munich; ^b Department of Radiation Oncology, Heidelberg University Hospital; ^c Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg; ^d Department of Radiotherapy, MAASTRO, Maastricht, The Netherlands; ^e Department of Radiation Oncology, Medical University of Vienna/AKH Wien; ^f Institute for Radiation Oncology and Radiotherapy, Landesklinikum Wiener Neustadt; ^g Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden; ^h Azienda Provinciale per i Servizi Sanitari (APSS) Protontherapy Department, Trento, Italy; ⁱ Department of Medical Physics & Instrumentation, Institute Verbeeten, Tilburg, The Netherlands; ^j Hospital CUF Descobertas, Department of Radiation Oncology, Lisbon, Portugal; ^k Department of Radiation Oncology, University Hospital Zürich, Switzerland; ^l Department of Radiation Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy; ^m Centre de Radiothérapie de Mâcon, France; ⁿ Department of Radiation Oncology, Universität Erlangen-Nürnberg, Germany; ^o Radiation Oncology Department, Calvary Mater Newcastle; ^p School of Information and Physical Sciences, University of Newcastle; and ^q Institute of Medical Physics, University of Sydney, Australia

INITIAL EXPERIENCE

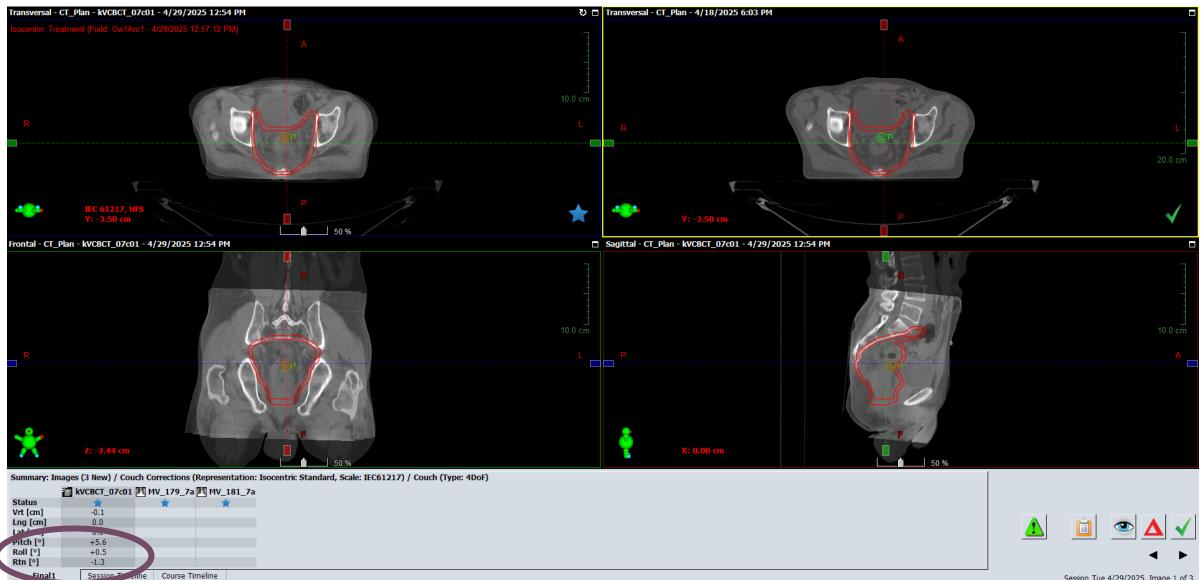
- Breast
- Extremity
- Thorax
- Pelvis
- Head neck

RESIDUAL ROTATIONAL ERRORS WITH AND WITHOUT SURFACE GUIDED SETUP IN PATIENTS RECEIVING PELVIC RADIOTHERAPY

HYPOTHESIS

• Rotational errors will reduce after setup with surface guidance.

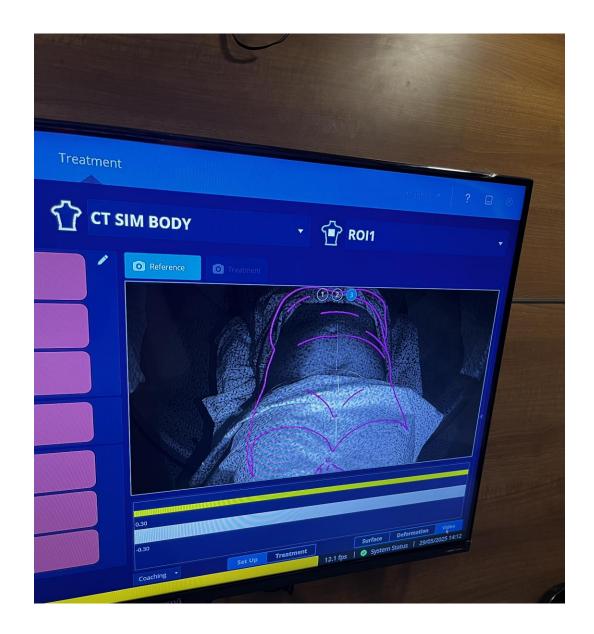
BACKGROUND

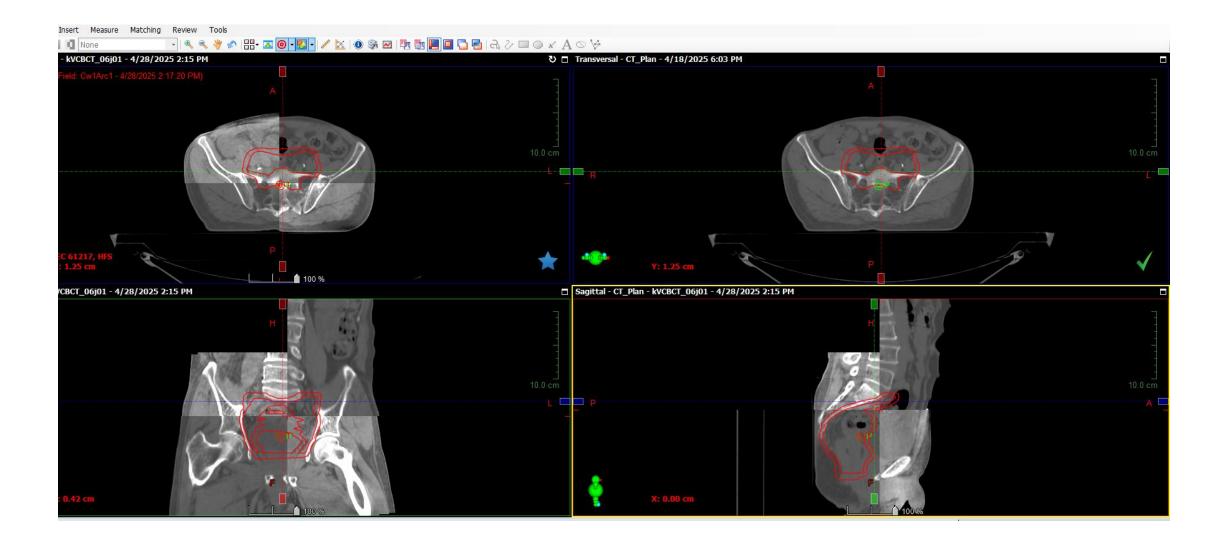

• Halcyon Elite does not allow for correction of rotational errors.

▶ Rep Pract Oncol Radiother. 2024 Feb 16;28(6):764–771. doi: <u>10.5603/rpor.98733</u> [2]

Surface-guided radiotherapy improves rotational accuracy in gynecological cancer patients

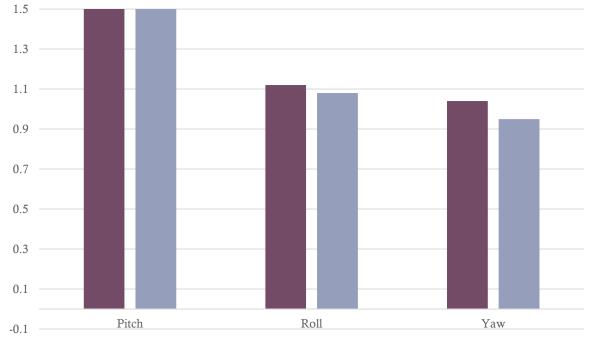
<u>Mimmi-Caroline Bolin</u>^{1,∞}, <u>Marianne Falk</u>¹, <u>Mattias Hedman</u>^{2,3}, <u>Giovanna Gagliardi</u>^{1,3}, <u>Eva Onjukka</u>^{1,3}


Author information Article notes Copyright and License information PMCID: PMC10954265 PMID: <u>38515814</u>


Session Tue 4/29/2025, Image 1 of 3

METHODOLOGY

- Retrospective study.
- A cohort of 18 patients undergoing pelvic radiotherapy was identified.
- For each patient had 4-5 treatments were selected with and without "setup with surface guidance".
- CBCT was analyzed in offline review and translational and rotational errors (6D) were noted.
- Mean, Median and Standard Deviation was calculated.
- The mean values of rotational errors between SGRT and non SGRT group were compared using paired T test.

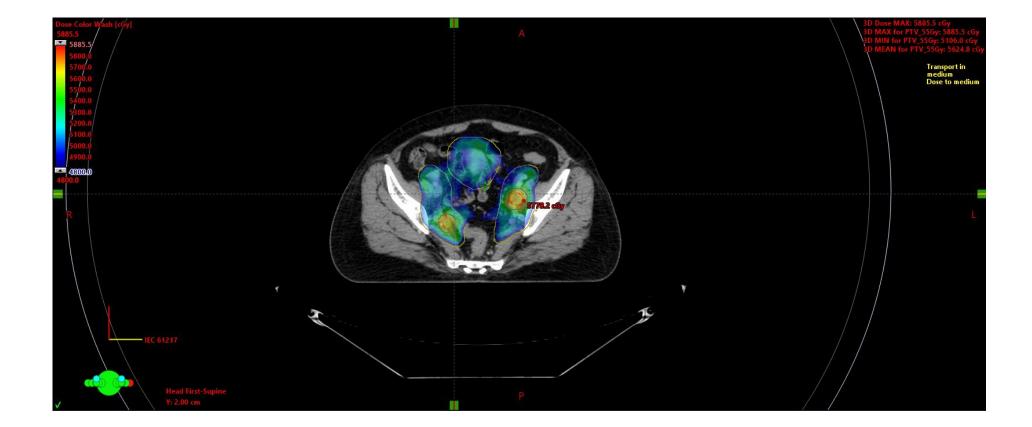


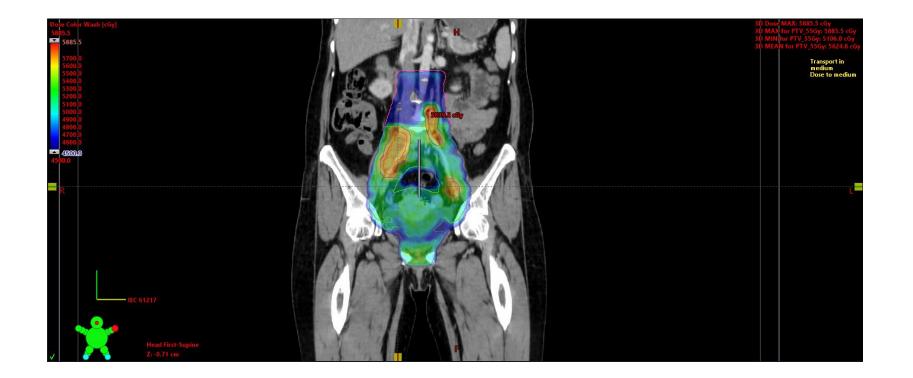
FINDINGS

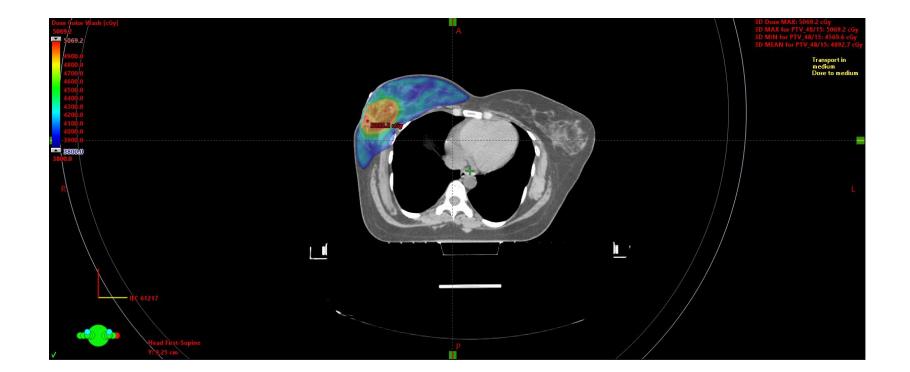
- Sample size 186 offline reviews belonging to 18 patients reviewed retrospectively
- Sites- Ca Rectum, Ca Endometrium, Ca cervix

Pitch	Without SGRT With SGR	T
Mean	2.15	2.09
SD	1.63	1.43
SE Diff	0.224	
CI	-0.38-0.5	
p value	0.79	
<u>Roll</u>		
Mean	1.12	1.08
SD	1.02	0.87
SE Diff	0.13	
CI	-0.2-0.3	
p value	0.77	
Yaw		
Mean	1.04	0.95
SD	0.82	0.77
SE Diff	0.11	
CI	-0.13-0.31	
p value	0.43	

GRAPH




■ Without SGRT ■ SGRT


DISCUSSION

- Although p value is not statistically significant there was a trend to lower rotational values after using SGRT for setup.
- Likely to significantly benefit extended fields.
- Larger sample size required.
- The impact of rotational deviations on target dose coverage was not studied.
- Within technologist learning curve.
- Other advantages of SGRT remain

FUTURE APPLICATIONS

- Autobeam hold on Halcyon
- Vision RT in Truebeam (autobeam hold)
- Dose RT
- Institutional PTV calculations

VAN HERKS FORMULA

$M = A \Sigma + B \Sigma INTER^{2} + \Sigma INTRA^{2} + \Sigma P^{2} - B \Sigma P + GM$

- M: is the PTV margin.
- α : and β are coefficients (often 2.5 and 1.64, respectively).
- Σ: is the standard deviation of the systematic error (e.g., due to setup variation).
- σ _inter: is the standard deviation of inter-fractional motion.
- σ_{intra} : is the standard deviation of intra-fractional motion.
- σ_p : is the standard deviation of the dose penumbra (blurring).
- **GM**: represents the geometric margin

THANK YOU!

Special thanks to :

Dr Zade, Dr Mutha, Dr Dhingra

Dr Sathiyanarayan, Dr Holla

Dr Niraj Dhawale, Dr Anubhav P

Physics and RTT teams

Dr Mansi Munshi Girme, MD Senior Consultant Radiation Oncology Ruby Hall Clinic, Pune

mansi.munshi@gmail.com

9175953363

