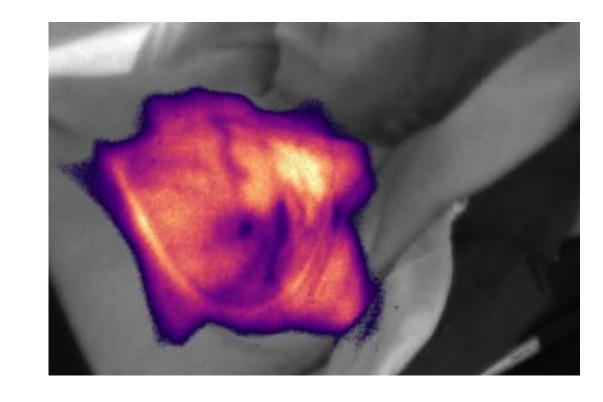
Cherenkov Imaging: Clinical Experience with DoseRT

Dartmouth

Cancer Center


Daniel Alexander, PhD

Geisel School of Medicine at Dartmouth

Dartmouth Health

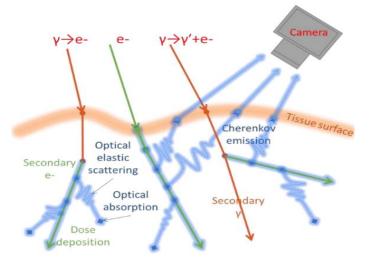
2025 AAPM VisionRT Event

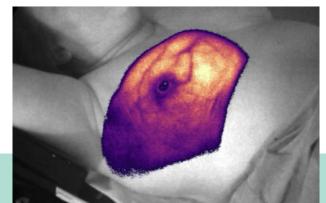
Washington DC

Disclosures

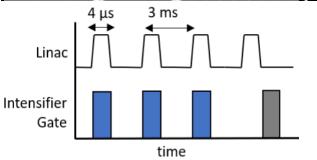
• I received partial travel sponsorship and an honorarium from Vision RT

What is Cherenkov Imaging?

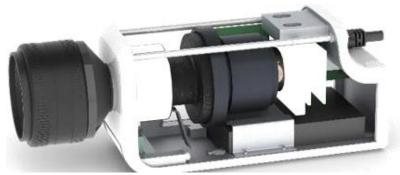

• Cherenkov radiation is optical light which is emitted from sufficiently high-energy charged particles passing through a dielectric medium


Cherenkov imaging is a technique where intensified cameras are used to image this light

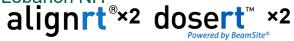
from patients undergoing RT


Intensity of photons emitted is directly related to dose deposition

- Cherenkov photons penetrate ~1 cm in tissue
- Cameras are time-gated to the linac pulses to allow for single-photon level imaging with the ambient room lights on



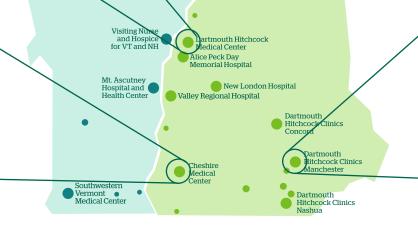
DoseRT: Visualization of superficial dose delivery via Cherenkov emission



Cherenkov Imaging at Dartmouth Health

Dartmouth Hitchcock Medical Center, Lebanon NH

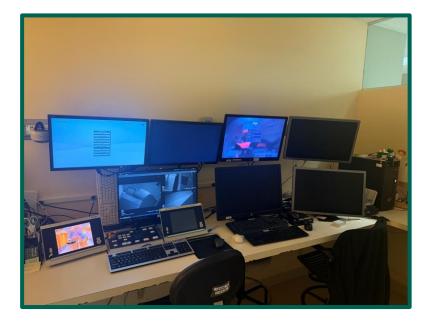
Dartmouth Cancer Center - St. Johnsbury VT

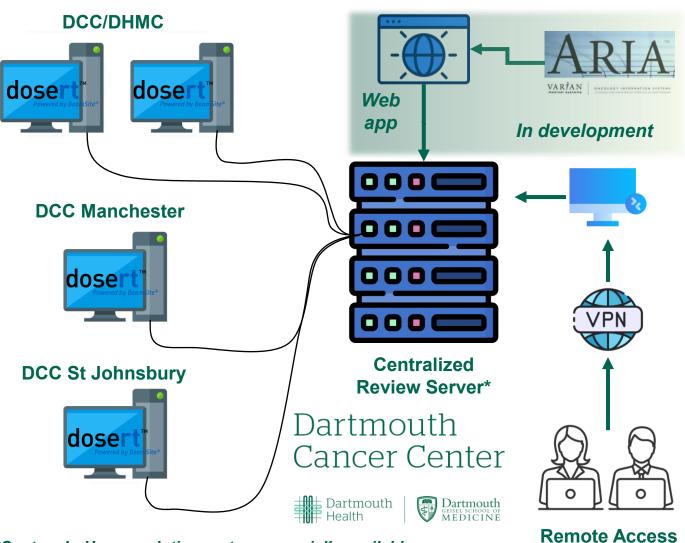

alignrt®

Cheshire Medical Center, Keene NH

Dartmouth Cancer Center - Manchester NH *Coming August 2025

alignrt®




DoseRT Layout at DHMC

Workflows and Infrastructure Supporting Cherenkov Imaging at Dartmouth

Physician

*Custom In-House solution, not commercially available

Published Clinical Evidence – Initial Experience at Dartmouth

2021 – Prospective, 64 Patients

INTERNATIONAL JOURNAL OF

RADIATION ONCOLOGY • BIOLOGY • PHYSICS

PHYSICS CONTRIBUTION · Volume 109, Issue 5, P1627-1637, April 01, 2021 Download Full Issue

Initial Clinical Experience of Cherenkov Imaging in External Beam Radiation Therapy Identifies Opportunities to Improve Treatment Delivery

Lesley A. Jarvis, MD, PhD 🖰 * 🖾 · Rachael L. Hachadorian, MS † · Michael Jermyn, PhD † · Petr Bruza, PhD † Daniel A. Alexander, MS†·Irwin I. Tendler, PhD†·Benjamin B. Williams, PhD*[†]·David]. Gladstone, ScD^{*}[†] · Philip E. Schaner, MD, PhD * · Bassem I. Zaki, MD * · Brian W. Pogue, PhD † Show less

Affiliations & Notes ∧ Article Info ∨

- Department of Medicine, Section of Radiation Oncology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
- † Thayer School of Engineering at Dartmouth, Hanover, New Hampshire

Notable findings:

- Observation of dose to contralateral breast
- 2 Observation of extraneous dose to nearby tissues or extremities
- Nonideal bolus positioning

2022 – Retrospective, 622 patients

Propractical radiation oncology ASTRO

BASIC ORIGINAL REPORT · Volume 13, Issue 1, P71-81, January-February, 2023

▲ Download Full Issue

One Year of Clinic-Wide Cherenkov Imaging for Discovery of Quality Improvement Opportunities in Radiation Therapy

Daniel A. Alexander, PhD $\stackrel{>}{\sim}$ a,1 $\stackrel{\boxtimes}{\bowtie}$ · Savannah M. Decker, BS a,b,1 · Michael Jermyn, PhD a,b Petr Bruza, PhD a,b · Rongxiao Zhang, PhD a,c,d · Erli Chen, MS e · Tatum L. McGlynn, BS d · Rory A. Rosselot, BS d · Jae Lee, BA d · Melanie L. Rose, MD d · Benjamin B. Williams, PhD a,c,d Brian W. Pogue, PhD ^{a,b,f} · David J. Gladstone, ScD ^{a,c} · Lesley A. Jarvis, MD, PhD ^{c,d} Show less

Affiliations & Notes ∧ Article Info ∨

- a Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
- Dose Optics LLC, Lebanon, New Hampshire
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
- Dartmouth Cancer Center, Lebanon, New Hampshire

Notable findings:

- 1 Observation of dose to contralateral breast (planned and unplanned)
- Observation of extraneous dose to nearby tissues or extremities
- 3. Nonideal bolus positioning

2022 –Community Implementation

FULL LENGTH ARTICLE · Volume 24, P1-5, December 2022 · Open Access

Clinical implementation of the first Cherenkov imaging system in a community-based hospital

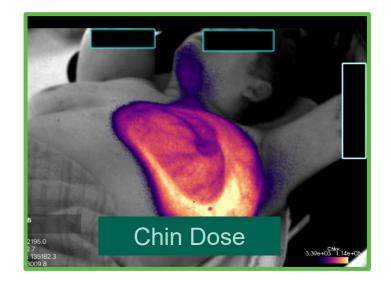
Erli Chen Sa. Brian W. Pogue b. Petr Bruza b. Daniel A. Alexander b. Nancy L. Andino a. Savannah M. Decker b · Danielle M. Gaudet a · David J. Gladstone b,c · Melinda J. Lake a · Steven R. Levene a Jennifer L. Michelson a · Hila L. Robinson · Debra N. Stallings · John E. Starkey · Lesley A. Jarvis c,d

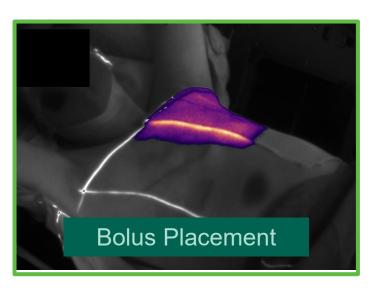
Affiliations & Notes ∧ Article Info ∨

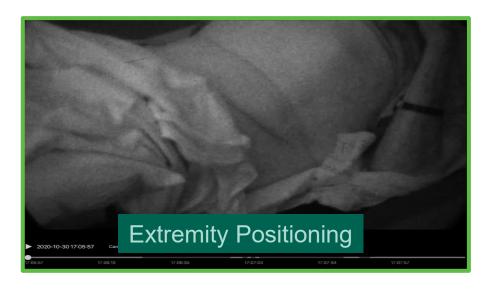
- a Cheshire Medical Center Dartmouth Health
- Thaver School of Engineering at Dartmouth

Notable findings:

- Observation of dose to contralateral breast
- 2 Observation of extraneous dose to nearby tissues or extremities
- 3. Nonideal bolus positioning

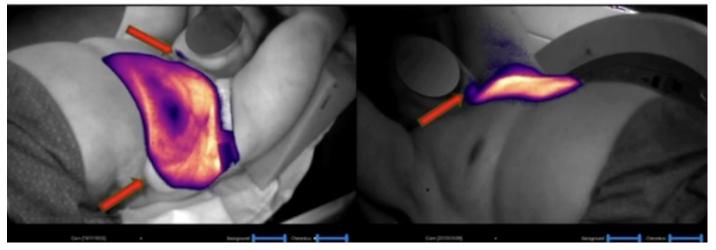


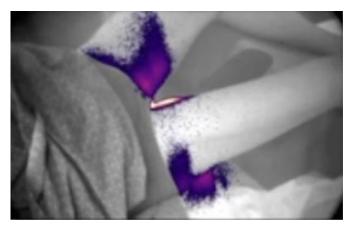


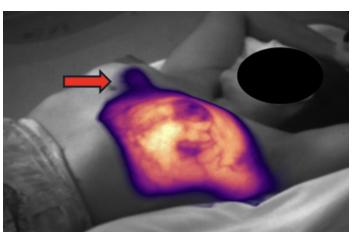


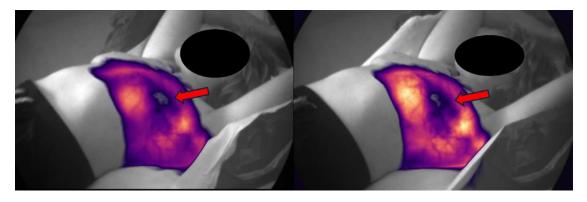
Examples from these studies

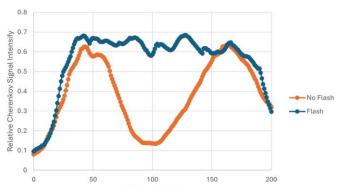
Dartmouth Cancer Center

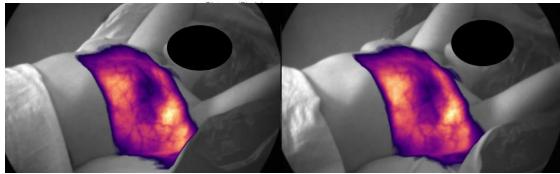



 We knew these issues existed in our network as of 2021, but it remained to be seen how Cherenkov imaging would be used once widely available


A few years later, other clinics have Dose RT....





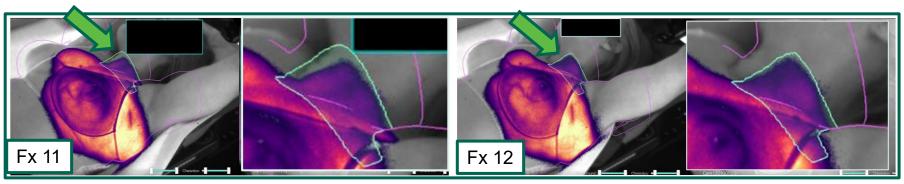

...and are reporting very similar findings!

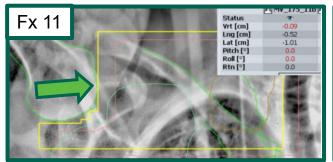
Outside the Academic Setting, Clinical Physicists are Improving Treatments with Cherenkov Imaging

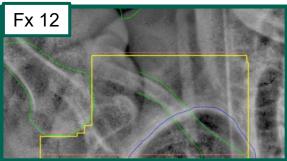
advances ASTRO

TEACHING CASE · Volume 10, Issue 7, 101798, July 2025 · Open

Optimizing Breast Cancer Radiation therapy With Volumetric Modulated Arc Therapy and Skin Flash: A Case Study Using Deep Inspiration Breath Hold and Cherenkov Imaging


Adi Robinson, PhD ^a ™ · Michael Tallhamer, MS · Amber Orman, MD a


Fraction	TLD reading (cGy)	TPS estimate (cGy)
2 (no flash)	105	146
3 (flash)	133	137


Case Study: DoseRT corroborates non-ideal sclav alignment

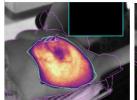
* Plan overlay is not a commercially available feature

<u>Planned</u>
Field edge on lateral esophagus
Spinal cord out of field

Shifted 1 cm medial
Field includes all of esophagus
Half of spinal cord in field

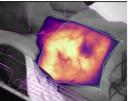
- Left sided breast patient, treated tangents + sclav fields w/ DIBH
- By week two, patient reported symptoms of esophagitis
- Covering MD over holiday noticed lateral misalignment on sclav port films
- DoseRT also highlighted non-ideal alignment that day
- Jaw was adjusted medially to block the esophagus, and pt was reimaged the next two days, highlighting much better alignment
- Key: Port Films are not taken every day!

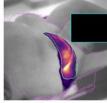
Pushing Cherenkov Imaging Forward: Further Investigation of Contralateral Breast Dose – *EDUCATE* Trial *E*valuating *D*ose *U*sing *C*herenkov *A*nd scintillation *TE*chnology



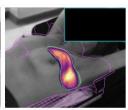
Matous, MD

Jarvis, MD PhD

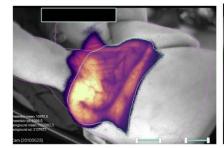

Motivated by WECARE Study - CBD in excess of 1 Gy in young patients is associated with elevated risk of a subsequent contralateral breast cancer

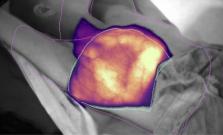

Whole Breast

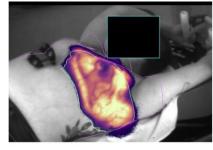
with Tangents


v

Whole Breast Tangents + RNI


Accelerated
Partial Breast
Irradiation (aPBI)
with VMAT


Partial Breast "Mini Tangents"


Prone Tangents

Planned CBD

Unplanned CBD

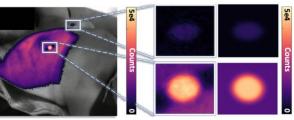
Combination of planned & unplanned CBD

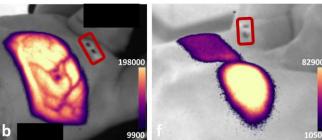
• Goal of EDUCATE is to:

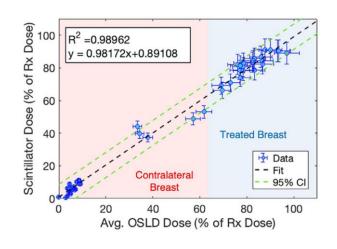
Active Trial at DCC

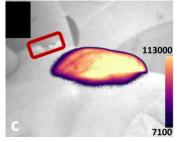
- Establish the incidence of CBD in routine clinical practice
- Quantify CBD using Cherenkov-image-guided in vivo dosimetry
- To determine the root causes of CBD (planned vs unplanned)
- Initial Findings:
 - Images for 129 unique patients over 1854 fractions reviewed over 6 months
 - CBD was identified during treatment delivery for 40 unique patients, and was unplanned in 10% of cases
 - 27% of patients under 50 had CBD appreciated on Cherenkov imaging
 - Doses ranged from 0.25-2 Gy per fraction

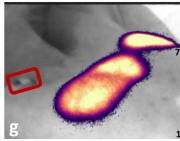
Pushing Cherenkov Imaging Forward: Cherenkov Imaging guides dosimeter placement, and cameras can be used to measure dose




Decker, PhD


ASTRO





INTERNATIONAL JOURNAL OF
RADIATION ONCOL

RADIATION ONCOLOGY • BIOLOGY • PHYSICS

CLINICAL INVESTIGATION · Volume 121, Issue 2, P365-374, February 01,

202

Visual Dose Monitoring for Whole Breast Radiation Therapy Treatments via Combined Cherenkov Imaging and Scintillation Dosimetry

Savannah M. Decker, PhD △ * ☑ · Petr Bruza, PhD * · Rongxiao Zhang, PhD † · Brian W. Poque, PhD * · David J. Gladstone, ScD *,†,‡ · Lesley A. Jarvis, MD, PhD †,‡

ORIGINAL RESEARCH ARTICLE · Volume 32, 100642, October 2024 · Open

Access

Cherenkov imaging combined with scintillation dosimetry provides real-time positional and dose monitoring for radiotherapy patients with cardiac implanted electronic devices

Savannah M. Decker a,1 · Allison L. Matous b,1 · Rongxiao Zhang a,c · David J. Gladstone a,b · Evan K. Grove d · Benjamin B. Williams b · Michael Jermyn a,e · Shauna McVorran b · Lesley A. Jarvis $\overset{\circ}{\sim}$ b \boxtimes Show less

Check out this talk: "You Can't Unsee It": Clinical Scintillation Imaging Enables First Localized Comparison between In Vivo dosimetry Measurements and the Treatment Plan Megan Clark, PhD, Session: TU--1120-204 - Therapy Physics Scientific Session: Advances in Dosimetry Tuesday 11:30 AM

Conclusions

- Cherenkov imaging provides a visualization of dose delivery on the patient surface in real time
- The images are available every day, and are shown to reflect the setup quality seen on x-ray imaging in the highlighted cases
- Installs at independent institutions reveal similar findings
- Dartmouth is leveraging DoseRT to iterate with RTTs and MDs to improve setup and plan quality by seen the treatment through a new lens
- On the research side, Cherenkov imaging is being used to guide in vivo dosimeter placement, monitor contralateral breast dose, and much more (physiological sensing, FLASH treatment monitoring, morphological feature-based setup accuracy, etc.)

Thank you!

Daniel.A.Alexander@Hitchcock.org

Dartmouth Cancer Center

